如圖,已知拋物線y=-x2+bx+c與x軸交于點A、B,與y軸交于點C,點N為拋物線上的一點,點M為拋物線的頂點,B(3,0)、N(2,3).

(1)求拋物線的解析式;
(2)直線CM與x軸交于點D,求△ADM的面積;
(3)拋物線的對稱軸與x軸交于點E,坐標平面內(nèi)是否存在一點F,使以點C、E、F、M為頂點的四邊形是平行四邊形,若存在,請直接寫出點F的坐標,若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+3;
(2)4;
(3)存在,(0,-1)或(0,7)或(2,1).
(2)4;
(3)存在,(0,-1)或(0,7)或(2,1).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:55引用:2難度:0.2
相似題
-
1.已知點P是二次函數(shù)y1=-(x-m+1)2+m2-m-1圖象的頂點.
(1)小明發(fā)現(xiàn),對m取不同的值時,點P的位置也不同,但是這些點都在某一個函數(shù)的圖象上,請協(xié)助小明完成對這個函數(shù)的表達式的探究:
①將下表填寫完整:m -1 0 1 2 3 P點坐標 (-2,1) (-1,-1)
(2)若過點(0,2),且平行于x軸的直線與y1=-(x-m+1)2+m2-m-1的圖象有兩個交點A和B,與②中得到的函數(shù)的圖象有兩個交點C和D,當AB=CD時,直接寫出m的值等于 ;
(3)若m≥2,點Q在二次函數(shù)y1=-(x-m+1)2+m2-m-1的圖象上,橫坐標為m,點E在②中得到的函數(shù)的圖象上,當∠EPQ=90°時,求出E點的橫坐標(用含m的代數(shù)式表示).發(fā)布:2025/5/25 18:30:1組卷:259引用:1難度:0.3 -
2.如圖,拋物線與坐標軸分別交于A(-1,0),B(3,0),C(0,3).
(1)求拋物線的解析式;
(2)拋物線上是否存在點P,使得∠CBP=∠ACO,若存在,求出點P的坐標;若不存在,說明理由;
(3)如圖2,Q是△ABC內(nèi)任意一點,連接AQ,BQ,CQ,分別交BC于點D,交拋物線于點E,交x軸于點F,求+DQAD+EQBE的值.QFCF發(fā)布:2025/5/25 18:30:1組卷:64引用:1難度:0.2 -
3.已知點P(m,n)在拋物線y=ax2+2x+1上運動.
(1)當a=-1時,若點P到y(tǒng)軸的距離小于2,求n的取值范圍;
(2)當-4≤m≤0時,n的最大值是1,求a的取值范圍.發(fā)布:2025/5/25 18:30:1組卷:205引用:2難度:0.4