如圖,點P是正方形ABCD對角線AC上一動點,點E在射線BC上,且PE=PB,連接PD,O為AC中點.

(1)如圖1,當點P在線段OA上時,試猜想PE與PD的數量關系和位置關系.
(2)如圖2,當點P在線段OC上時,(1)中的猜想還成立嗎?請說明理由.
(3)如圖2,試用等式來表示PB、BC、CE之間的數量關系:BC2+CE2=2PB2BC2+CE2=2PB2.
【考點】四邊形綜合題.
【答案】BC2+CE2=2PB2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/6/8 18:0:1組卷:53引用:1難度:0.1
相似題
-
1.(1)如圖1,在四邊形ABCD中,DA=DC,∠A=∠C=90°,E、F分別是邊AB、BC上的點,且∠EDF=
∠ADC,請直接寫出圖中線段AE、EF、FC之間的數量關系 .12
(2)如圖2,在四邊形ABCD中,DA=DC,∠A+∠C=180°,E、F分別是邊AB、BC上的點,且∠EDF=∠ADC,上述結論是否仍然成立,并說明理由.12
(3)如圖3,在四邊形ABCD中,DA=DC,∠A+∠BCD=180°,E、F分別是邊AB、BC延長線上的點,且∠EDF=∠ADC,(1)中的結論是否仍然成立?若成立,請證明;若不成立,線段AE、EF、FC之間又有怎樣的數量關系,請直接寫出你的猜想,并說明理由.12發布:2025/6/9 2:30:1組卷:165引用:1難度:0.2 -
2.矩形ABCD中,∠ACB=30°,△BEF中,∠BEF=90°,∠BFE=30°,BF=
AC,連接FD,點G是FD中點,將△BEF繞點B順時針旋轉α(0°<α<360°).12
(1)如圖1,若點B恰好在線段DF延長線上,AB=4,連接EG,求EG的長度;
(2)如圖2,若點E恰好落在線段FD上,連接AG,證明:2(GD-GA)=DC;3
(3)如圖3,若點E恰好落在線段AB延長線上,點M是線段AD上一點,3AM=DM,N是平面內一點,滿足∠MND=∠FDC,已知AB=4,當△DMN是等腰三角形時,直接寫出線段MN的長度.發布:2025/6/9 1:0:1組卷:118引用:1難度:0.1 -
3.問題情境:數學活動課上,老師組織同學們以“正方形”為主題開展數學活動.
動手實踐:
(1)如圖①,已知正方形紙片ABCD,勤奮小組將正方形紙片沿過點A的直線折疊,使點B落在正方形ABCD的內部,點B的對應點為點M,折痕為AE,再將紙片沿過點A的直線折疊,使AD與AM重合,折痕為AF,易知點E、M、F共線,則∠EAF=度.
拓展應用:
(2)如圖②,騰飛小組在圖①的基礎上進行如下操作:將正方形紙片沿EF繼續折疊,使得點C的對應點為點N,他們發現,當點E的位置不同時,點N的位置也不同,當點E在BC邊的某一位置時,點N恰好落在折痕AE上.
①則∠CFE=度.
②設AM與NF的交點為點P,運用(1)、(2)操作所得結論,求證:△ANP≌△FNE.
解決問題:
(3)在圖②中,若AB=3,請直接寫出線段MP的長.發布:2025/6/9 2:0:7組卷:1098引用:9難度:0.3