古希臘數學家歐幾里得在《幾何原本》中描述了圓錐曲線的共性,并給出了圓錐曲線的統一定義,他指出,平面內到定點的距離與到定直線的距離的比是常數e的點的軌跡叫做圓錐曲線;當0<e<1時,軌跡為橢圓;當e=1時,軌跡為拋物線;當e>1時,軌跡為雙曲線.則方程(x-4)2+y2|25-4x|=15表示的圓錐曲線的離心率e等于( )
(
x
-
4
)
2
+
y
2
|
25
-
4
x
|
=
1
5
1 5 | 4 5 | 5 4 |
【考點】雙曲線的幾何特征.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/30 2:0:8組卷:144引用:3難度:0.8
相似題
-
1.已知F1,F2為橢圓和雙曲線的公共焦點,P是它們的公共點,且∠F1PF2=
,e1,e2分別為橢圓和雙曲線的離心率,則π3的值為( )4e1e23e12+e22A.1 B.2 C.3 D.4 發布:2025/1/2 23:30:3組卷:204引用:2難度:0.5 -
2.若雙曲線
-x28=1的漸近線方程為y=±2x,則實數m等于( )y2mA.4 B.8 C.16 D.32 發布:2025/1/5 18:30:5組卷:26引用:1難度:0.9 -
3.已知雙曲線
的右焦點為F(2,0),漸近線方程為x2a2-y2b2=1(a>0,b>0),則該雙曲線實軸長為( )3x±y=0A.2 B.1 C. 3D. 23發布:2025/1/2 19:0:5組卷:136引用:2難度:0.7