已知函數(shù)f(x)=xln(x+1),g(x)=a(x+1x+1-1).
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)記h(x)=g(x)-f(x),若當(dāng)x∈(-1,0)時,h(x)>0恒成立,求正實數(shù)a的取值范圍.
f
(
x
)
=
xln
(
x
+
1
)
,
g
(
x
)
=
a
(
x
+
1
x
+
1
-
1
)
【答案】(1);(2)[1,+∞).
y
=
(
ln
2
+
1
2
)
x
-
1
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/10 8:0:9組卷:24引用:1難度:0.3
相似題
-
1.直線y=
x+b是曲線y=lnx的一條切線,則實數(shù)b的值為( )12A.2 B.ln2+1 C.ln2-1 D.ln2 發(fā)布:2025/1/7 12:30:6組卷:63引用:5難度:0.9 -
2.曲線y=lnx上一點P和坐標(biāo)原點O的連線恰好是該曲線的切線,則點P的橫坐標(biāo)為( )
A.e2 B. eC.e D.2 發(fā)布:2025/1/3 16:0:5組卷:12引用:6難度:0.7 -
3.設(shè)曲線
在點(1,1)處的切線與直線ax+y+1=0垂直,則a=( )y=lnxx+1A.-1 B. 12C. -12D.1 發(fā)布:2024/12/29 15:30:4組卷:88引用:3難度:0.7