問題請境:如圖1,在直角三角板ABC中,∠C=90°,AC=BC.將一個用足夠長的細鐵絲制成的直角的頂點D放在直角三角板ABC的斜邊AB上,再將該直角繞點D旋轉,并使其兩邊分別與三角板的AC,BC邊交于P,Q兩點.

問題探究:
(1)在旋轉過程中,
①如圖2,當AD=BD時,線段DP,DQ的數量關系是 BB.
A.DP<DQ
B.DP=DQ
C.DP>DQ
D.無法確定
②如圖3,當AD=2BD時,線段DP,DQ有何數量關系?請證明你的結論.
③根據你對①②的探究結果,試寫出當AD=nBD時,DP,DQ滿足的數量關系:DP=nDQDP=nDQ.(直接寫出結論,不必證明)
(2)當AD=BD時,若AB=20,連接PQ.設△DPQ的面積為S,在旋轉過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由.
【考點】三角形綜合題.
【答案】B;DP=nDQ
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:18引用:1難度:0.3
相似題
-
1.如圖,在△ABC中,∠BAC=90°,以AB為一邊向外作正方形ABDE,點F為直線BC上的一點,連接DF,作FG⊥DF交直線AB于點G.
(1)如圖1,若AB=AC,點F在線段BC上,請直接寫出線段DF與FG的數量關系;
(2)如圖2,若AB=AC,點F在線段BC上,試探究線段BD,BF,BG三者之間的數量關系,并證明你的結論;3
(3)若AB=AC,AB=3,DF=23,請直接寫出AG的長.2發布:2025/5/25 8:30:2組卷:125引用:1難度:0.2 -
2.如圖,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的頂點A在△ECD的斜邊DE上,連接DB.
(1)證明:△EAC≌△DBC;
(2)當點A在線段ED上運動時,猜想AE、AD和AC之間的關系,并證明.
(3)在A的運動過程中,當,AE=2時,求△ACM的面積.AD=6發布:2025/5/25 8:30:2組卷:376引用:5難度:0.1 -
3.【閱讀理解】
截長補短法,是初中數學幾何題中一種輔助線的添加方法.截長就是在長邊上截取一條線段與某一短邊相等,補短是通過在一條短邊上延長一條線段與另一短邊相等,從而解決問題.
(1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數量關系.
解題思路:延長DC到點E,使CE=BD,連接AE,根據∠BAC+∠BDC=180°,可證∠ABD=∠ACE易證得△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而探尋線段DA、DB、DC之間的數量關系.
根據上述解題思路,請直接寫出DA、DB、DC之間的數量關系是 ;
【拓展延伸】
(2)如圖2,在Rt△ABC中,∠BAC=90°,AB=AC.若點D是邊BC下方一點,∠BDC=90°,探索線段DA、DB、DC之間的數量關系,并說明理由;
【知識應用】
(3)如圖3,兩塊斜邊長都為14cm的三角板,把斜邊重疊擺放在一起,則兩塊三角板的直角頂點之間的距離PQ的長為 cm.發布:2025/5/25 9:0:1組卷:427引用:6難度:0.3