六個(gè)函數(shù)分別是①y=x;②y=-x+1;③y=x2;④y=-x2+2x-1;⑤y=x3;⑥y=-x3+1.
(1)其中一次函數(shù)是①,②,二次函數(shù)是③,④,則⑤,⑥的函數(shù)可以定義為三次函數(shù)三次函數(shù);
(2)我們可以借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x3的圖象和性質(zhì);
①填寫下表,畫出函數(shù)的圖象;
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
x | … | -2 | - 3 2 | -1 | 0 | 1 | 3 2 | 2 | … |
y=x3 | … | … |
直角三角形
直角三角形
;(4)函數(shù)y=-x3+1的圖象關(guān)于點(diǎn)
(0,1)
(0,1)
成中心對稱圖形.【考點(diǎn)】二次函數(shù)綜合題.
【答案】三次函數(shù);直角三角形;(0,1)
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/22 8:30:1組卷:47引用:2難度:0.3
相似題
-
1.對于平面直角坐標(biāo)系xOy中的點(diǎn)P(m,n),定義一種變換:作點(diǎn)P(m,n)關(guān)于y軸對稱的點(diǎn)P′,再將P′向左平移k(k>0)個(gè)單位得到點(diǎn)Pk′,Pk′叫做對點(diǎn)P(m,n)的k階“?”變換.若一個(gè)函數(shù)圖象上所有點(diǎn)都進(jìn)行了k階“?”變換后組成的圖形稱為此函數(shù)進(jìn)行了k階“?”變換后的圖形.
(1)求P(3,2)的3階“?”變換后P3′的坐標(biāo);
(2)若直線y=x+1經(jīng)過k階“?”變換后的圖象與反比例函數(shù)的圖象y=沒有公共點(diǎn),求k的取值范圍.2x
(3)若拋物線C1:y=x2-4x+3與直線l:y=-x+3交于A,B兩點(diǎn),拋物線C1經(jīng)過k階“?”變換后的圖象記為C2,C2與直線l交于C,D兩點(diǎn),若=CDAB,求k的值.73發(fā)布:2025/6/22 7:30:1組卷:186引用:1難度:0.1 -
2.如圖所示,二次函數(shù)y=k(x-1)2+2的圖象與一次函數(shù)y=kx-k+2的圖象交于A、B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直線AB分別與x、y軸交于C、D兩點(diǎn),其中k<0.
(1)求A、B兩點(diǎn)的橫坐標(biāo);
(2)若△OAB是以O(shè)A為腰的等腰三角形,求k的值;
(3)二次函數(shù)圖象的對稱軸與x軸交于點(diǎn)E,是否存在實(shí)數(shù)k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,說明理由.發(fā)布:2025/6/22 14:0:2組卷:5631引用:5難度:0.1 -
3.如圖1,二次函數(shù)y=ax2-2ax-3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).發(fā)布:2025/6/22 11:0:2組卷:4122引用:11難度:0.1