【復習舊知】結合數軸與絕對值的知識回答下列問題:
數軸上表示4和1的兩點之間的距離是3;而|4-1|=3;表示-3和2兩點之間的距離是5;而|-3-2|=5;表示-4和-7兩點之間的距離是3;而|-4-(-7)|=3.
一般地,數軸上表示數m和數n的兩點之間的距離公式為|m-n|.

(1)數軸上表示數-4的點與表示-1的點之間的距離為 33.
【探索新知】
如圖①,我們在“格點”直角坐標系上可以清楚看到:要找AB或DE的長度,顯然是化為求Rt△ABC或Rt△DEF的斜邊長.

下面:以求DE為例來說明如何解決.
從坐標系中發現:D(-7,5),E(4,-3).所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以由勾股定理可得:DE=82+112=185.
(2)在圖②中:設A(x1,y1),B(x2,y2),試用x1,y1,x2,y2表示:AC=y1-y2y1-y2,BC=x1-x2x1-x2,AB=(x1-x2)2+(y1-y2)2(x1-x2)2+(y1-y2)2.
得出的結論被稱為“平面直角坐標系中兩點間距離公式”.
【學以致用】請用此公式解決如下題目:
(3)已知A(-2,3)、B(4,-5),試求A、B兩點間的距離.
(4)已知一個三角形各頂點坐標為A(-1,1)、B(-3,3)、C(2,4),請判定此三角形的形狀,并說明理由.
DE
=
8
2
+
1
1
2
=
185
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
【考點】三角形綜合題.
【答案】3;y1-y2;x1-x2;
(
x
1
-
x
2
)
2
+
(
y
1
-
y
2
)
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/10/6 2:0:1組卷:171引用:1難度:0.2
相似題
-
1.材料一:如圖①,點C把線段AB分成兩部分(AC>BC),若
=ACAB,那么稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點.類似地,對于實數:a1<a2<a3,如果滿足(a2-a1)2=(a3-a2)(a3-a1),則稱a2為a1,a3的黃金數.BCAC
材料二:如果一條直線l把一個面積為S的圖形分成面積為S1和S2兩部分(S1>S2),且滿足,那么稱直線l為該圖形的黃金分割線.如圖②,在△ABC中,若線段CD所在的直線是△ABC的黃金分割線,過點C作一條直線交BD邊于點E,過點D作DF∥EC交△ABC的一邊于點F,連接EF,交CD于G.S1S=S2S1
問題:
(1)若實數0<a<1,a為0,1的黃金數,求a的值.
(2)S△CFGS△EDG.(填”>””<””=”)
(3)EF是△ABC的黃金分割線嗎?為什么?發布:2025/5/26 11:0:2組卷:38引用:3難度:0.2 -
2.如圖所示,在平面直角坐標系內,A(0,
),B(-1,0),C(1,0),D點在y軸的負半軸上,且∠OCD=30°,現將∠ADC繞D點逆時針旋轉,角的一邊與線段CA或其延長線相交于E,另一邊與線段AB或其延長線相交于F.3
(1)當E、F兩點分別在線段CA、CB延長線上時,連接EF,如圖所示,試探究線段BF、EF、CE有何數量關系,并說明理由.
(2)在旋轉的過程中是否存在S△DBF:S△ADF=1:4?若存在,請求出F點的坐標;若不存在,請說明理由.發布:2025/5/26 14:30:2組卷:48引用:1難度:0.1 -
3.如圖,在△ABC中,∠C=90°,AC=3,BC=4,CD⊥AB于D,點E在斜邊AB上,過點E作直線與△ABC的直角邊相交于點F,設AE=x,△AEF的面積為y.
(1)求線段AD的長;
(2)若EF⊥AB,當點E在線段AB上移動點(E不與AB重合時),
①求y與x的函數關系式(寫出自變量x的取值范圍)
②當x取何值時,y有最大值?并求出這個最大值.發布:2025/5/26 15:0:1組卷:31引用:1難度:0.2