【問(wèn)題提出】如圖1,AB為⊙O的一條弦,點(diǎn)C在弦AB所對(duì)的優(yōu)弧上運(yùn)動(dòng)時(shí),根據(jù)圓周角性質(zhì),我們知道∠ACB的度數(shù)不變.愛(ài)動(dòng)腦筋的小芳猜想,如果平面內(nèi)線段AB的長(zhǎng)度已知,∠ACB的大小確定,那么點(diǎn)C是不是在某個(gè)確定的圓上運(yùn)動(dòng)呢?
【問(wèn)題探究】為了解決這個(gè)問(wèn)題,小芳先從一個(gè)特殊的例子開(kāi)始研究.如圖2,若AB=4,線段AB上方一點(diǎn)C滿足∠ACB=45°,為了畫(huà)出點(diǎn)C所在的圓,小芳以AB為底邊構(gòu)造了一個(gè)Rt△AOB,再以點(diǎn)O為圓心,OA為半徑畫(huà)圓,則點(diǎn)C在⊙O上.后來(lái)小芳通過(guò)逆向思維及合情推理,得出一個(gè)一般性的結(jié)論.即:若線段AB的長(zhǎng)度已知,∠ACB的大小確定,則點(diǎn)C一定在某一個(gè)確定的圓上,即定弦定角必定圓,我們把這樣的幾何模型稱(chēng)之為“定弦定角”模型.

【模型應(yīng)用】
(1)若AB=6,平面內(nèi)一點(diǎn)C滿足∠ACB=60°,若點(diǎn)C所在圓的圓心為O,則∠AOB=120°120°,劣弧AB的長(zhǎng)為 433π433π.
(2)如圖3,已知正方形ABCD以AB為腰向正方形內(nèi)部作等腰△ABE,其中AB=AE,過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F,若點(diǎn)P是△AEF的內(nèi)心.
①求∠BPE的度數(shù);
②連接CP,若正方形ABCD的邊長(zhǎng)為4,求CP的最小值.
4
3
3
4
3
3
【考點(diǎn)】圓的綜合題.
【答案】120°;π
4
3
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 1:30:2組卷:548引用:3難度:0.5
相似題
-
1.如圖,AB為⊙O的直徑,弦CD⊥AB于點(diǎn)E,F(xiàn)是CD上一點(diǎn),且AF=CF,點(diǎn)P在FA的延長(zhǎng)線上,且∠PFD=∠PDF,延長(zhǎng)PF與⊙O交于點(diǎn)G,連接AC,CG.
(1)求證:△AFC∽△ACG;
(2)求證:PD是⊙O的切線;
(3)若tanG=,BE-AE=34,求73的值.S△AFCS△CFG發(fā)布:2025/5/24 5:30:2組卷:72引用:1難度:0.4 -
2.如圖,在△AEF中,∠F=∠AEF,以AE為直徑作⊙O,分別交邊AF和邊EF于點(diǎn)G和點(diǎn)D,過(guò)點(diǎn)D作DC⊥AF交AF于點(diǎn)C,延長(zhǎng)CD交AE的延長(zhǎng)線于點(diǎn)B,過(guò)點(diǎn)E作EH⊥BC于點(diǎn)H.
(1)試判斷BD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)證明:EH=CF.
(3)若∠B=30°,AE=12,求圖中陰影部分的面積.發(fā)布:2025/5/24 6:0:2組卷:164引用:5難度:0.2 -
3.如圖,線段AB經(jīng)過(guò)⊙O的圓心O,交⊙O于A,C兩點(diǎn),AD為⊙O的弦,連接BD,∠A=∠ABD=30°,連接DO并延長(zhǎng),交⊙O于點(diǎn)E,連接BE交⊙O于點(diǎn)F.
(1)求證:BD是⊙O的切線;
(2)求證:2AD2=DE?AB;
(3)若BC=1,求BF的長(zhǎng).發(fā)布:2025/5/24 6:30:2組卷:547引用:3難度:0.7