如圖①,平行四邊形ABCD的一邊DC沿水平方向向右平行移動,圖②反映了它的底邊BC的長度l(cm)隨時間t(s)變化而變化的情況:
(1)邊DC沒有運動時,底邊BC的長度是 88cm;
(2)當0<t≤5時,邊DC向右運動的速度為 22cm/s,直接寫出此時BC的長度l與時間t的關系式 l=2t+8l=2t+8;
(3)DC邊在8s之后運動的方向 向左向左,(填“向左”或“向右”)此時BC的長度l與時間t的關系式 y=-3x+42y=-3x+42;
(4)圖③反映平行四邊形ABCD的面積S(cm2)隨時間t(s)變化而變化的情況:平行四邊形ABCD中,BC邊上的高為 22cm,圖③中括號填:3636;
(5)在(4)的條件下,當t=12時,s=1212cm2,當S=25時,t=94或59694或596s.
9
4
59
6
9
4
59
6
【考點】四邊形綜合題.
【答案】8;2;l=2t+8;向左;y=-3x+42;2;36;12;或
9
4
59
6
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/6/8 9:0:1組卷:186引用:2難度:0.1
相似題
-
1.將正方形ABCD繞點A逆時針旋轉α°到正方形AEFG.
(1)如圖1,當0°<α<90°時,EF與CD相交于點H.求證:DH=EH;
(2)如圖2,當0°<α<90°,點F、D、B正好共線時,
①求∠AFB度數;
②若正方形ABCD的邊長為1,求CH的長:
(3)連接DE,EC,FC.如圖3,正方形AEFG在旋轉過程中,是否存在實數m使AE2=DE2+mFC2-EC2總成立?若存在,求m的值;若不存在,請說明理由.發布:2025/6/8 13:30:1組卷:67引用:1難度:0.2 -
2.定義:四邊形ABCD中,將對角線AC和BD的平方和,即AC2+BD2的值稱為四邊形ABCD的“特征數”.
(1)①在菱形ABCD中,AB=4,∠BAD=60°,則菱形ABCD的“特征數”=;
②正方形EFGH的“特征數”等于16,則邊長=;
(2)平行四邊形ABCD中,AB=a,BC=b,試證明:平行四邊形ABCD的“特征數”為2a2+2b2;
(3)利用(2)的結論解決下列問題:
平行四邊形ABCD中,,BC=6,且AC?BD=60,AC<BD,試求AC和BD的長度.AB=42發布:2025/6/8 15:0:1組卷:373引用:3難度:0.2 -
3.如圖,矩形ABCD中,AB=4,AD=8,E在AD上,DE=3,點P從點B出發,以每秒1個單位長度的速度沿著BC邊向終點C運動,連接PE,設點P運動的時間為t秒.
(1)過P作PF⊥AD,垂足為F,用含t的式子表示:EF=,PC=;
(2)當t=2時,判斷△PEC是否是直角三角形,并說明理由;
(3)當∠PEC=∠DEC時,求t的值.發布:2025/6/8 12:30:1組卷:43引用:3難度:0.4