如圖,已知點A(-1,0),B(3,0),C(0,1)在拋物線y=ax2+bx+c上.
(1)求拋物線解析式;
(2)在直線BC上方的拋物線上求一點P,使△PBC面積為1;
(3)在x軸下方且在拋物線對稱軸上,是否存在一點Q,使∠BQC=∠BAC?若存在,求出Q點坐標;若不存在,說明理由.
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/24 22:0:1組卷:6096引用:17難度:0.4
相似題
-
1.在平面直角坐標系中,拋物線y=ax2+bx+1(a≠0)經過點A(2,1),頂點為點B.
(1)用含a的代數式表示b;
(2)若a>0,設拋物線y=ax2+bx+1(a≠0)的對稱軸為直線l,過A作AM⊥l于點M,且MB=2AM,當m-2≤x≤m時,拋物線的最高點的縱坐標為17,求m的值;
(3)若點C的坐標為(-5,-1),將點C向右平移9個單位長度得到點D,當拋物線y=ax2+bx+1(a≠0)與線段CD有兩個交點時,直接寫出a的取值范圍.發布:2025/5/25 3:30:2組卷:176引用:2難度:0.2 -
2.綜合與探究.如圖,在平面直角坐標系中,拋物線y=ax2+bx+3與x軸交于A(-1,0),B(4,0)兩點,與y軸交于點C,過點C作AB的平行線,交拋物線于點D,P為拋物線上一動點,過點P作直線CD的垂線,垂足為E,與x軸交于點F,設點P的橫坐標為m.
(1)求拋物線的函數表達式及點D的坐標;
(2)當m<-1,且時,探究四邊形ABDE能否成為平行四邊形,并說明理由;EFPF=23
(3)當m>0時,連接AC,PC,拋物線上是否存在點P,使∠PCE與∠BAC互余?若存在,請求出點P的坐標,若不存在,請說明理由.發布:2025/5/25 3:30:2組卷:134難度:0.2 -
3.已知拋物線y=ax2+x+c經過A(-1,0)、B(2,0)、C三點,直線y=mx+
交拋物線于A、D兩點,交y軸于點G.12
(1)求拋物線的解析式;
(2)點P是直線AD上方拋物線上的一點,作PF⊥x軸,垂足為F,交AD于點N,且點N將線段PF分為1:2的兩部分.
①求點P的坐標;
②過點P作PM⊥AD于點M,若直線l到直線AD的距離是PM的2倍,請直接寫出直線l的解析式.發布:2025/5/25 4:0:1組卷:494引用:4難度:0.4