試卷征集
          加入會員
          操作視頻

          已知數列{an}是等差數列,其前n項和為An,a7=15,A7=63;數列{bn}的前n項和為Bn,2Bn=3bn-3(n∈N*).
          (Ⅰ)求數列{an},{bn}的通項公式;
          (Ⅱ)求數列{
          1
          A
          n
          }的前n項和Sn
          (Ⅲ)求證:
          n
          k
          =
          1
          a
          k
          B
          k
          <2.

          【答案】(Ⅰ)數列{an}的通項公式為an=2n+1,數列{bn}的通項公式為bn=3n
          (Ⅱ)
          3
          4
          -
          2
          n
          +
          3
          2
          n
          +
          1
          n
          +
          2

          (Ⅲ)證明過程見解答.
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:855引用:6難度:0.5
          相似題
          • 1.已知等比數列{an}中,a1+a4=2,a2+a5=4,則數列{an}的前6項和S6=(  )

            發布:2025/1/5 18:30:5組卷:337引用:3難度:0.8
          • 2.已知Sn是各項均為正數的等比數列{an}的前n項和,若a2?a4=81,S3=13,則a6=(  )

            發布:2024/12/29 10:0:1組卷:64引用:3難度:0.7
          • 3.等比數列{an}中,公比為q,其前n項積為Tn,并且滿足a1>1.a99?a100-1>0,
            a
            99
            -
            1
            a
            100
            -
            1
            <0,下列選項中,正確的結論有(  )

            發布:2024/12/29 12:30:1組卷:529引用:2難度:0.5
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正