對于平面直角坐標系xOy中的圖形M,N,給出如下定義:P為圖形M上任意一點,Q為圖形N上任意一點,如果P,Q兩點間的距離有最小值,那么稱這個最小值為圖形M,N間的“閉距離“,記作d(M,N).
已知點A(-2,6),B(-2,-2),C(6,-2).
(1)求d(點O,△ABC);
(2)記函數y=kx(-1≤x≤1,k≠0)的圖象為圖形G.若d(G,△ABC)=1,直接寫出k的取值范圍;
(3)⊙T的圓心為T(t,0),半徑為1.若d(⊙T,△ABC)=1,直接寫出t的取值范圍.
【考點】圓的綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:4373引用:8難度:0.3
相似題
-
1.如圖,AB為⊙O的直徑,點C在BA延長線上,點D在⊙O上,連接CD,AD,∠ADC=∠B,OF⊥AD于點E,交CD于點F.
(1)求證:CD是⊙O的切線;
(2)若S△COF:S△CBD=9:16,求sinC的值.發布:2025/5/23 18:30:2組卷:300引用:1難度:0.4 -
2.如圖,⊙O是△ABC的外接圓,分別過A,C作AD∥BC,CD∥AB.
(1)求證:AD=BC;
(2)若AC=BC.
①求證:CD是⊙O的切線;
②已知AB=6cm,當四邊形ABCD的某條邊所在直線過圓心O時,求⊙O的半徑.發布:2025/5/23 17:30:1組卷:150引用:2難度:0.1 -
3.如圖,在△ABC中,∠C=90°,AC=3,BC=4.O為BC邊上一點,以O為圓心,OB為半徑作半圓,分別于與邊BC、AB交于點D、E,連接DE.
(1)∠BED=°;
(2)當BD=3時,求DE的長;
(3)過點E作半圓O的切線,當切線與邊AC相交時,設交點為F.求證:AF=EF.發布:2025/5/23 17:30:1組卷:229引用:4難度:0.1