如圖,拋物線y=-12x2+bx+c與x軸交于A、B兩點,與y軸交于點C,直線y=-12x+2過B、C兩點,連接AC.
(1)求拋物線的解析式;
(2)求證:△AOC∽△ACB;
(3)點M(3,2)是拋物線上的一點,點D為拋物線上位于直線BC上方的一點,過點D作DE⊥x軸交直線BC于點E,點P為拋物線對稱軸上一動點,當線段DE的長度最大時,求PD+PM的最小值.
1
2
1
2
【考點】二次函數綜合題.
【答案】(1)y=-x2+x+2;(2)見解析;(3).
1
2
3
2
5
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/5/25 23:30:1組卷:2646引用:5難度:0.2
相似題
-
1.二次函數
的圖象與x軸交于A、兩點(點A在點B左邊),與y軸交于C點,且∠ACB=90°.y=-12x2+32x+m-2
(1)求這個二次函數的解析式;
(2)設計兩種方案:作一條與y軸不重合,與△A BC兩邊相交的直線,使截得的三角形與△ABC相似,并且面積為△BOC面積的,寫出所截得的三角形三個頂點的坐標(注:設計的方案不必證明).14發布:2025/5/28 4:30:1組卷:84引用:1難度:0.9 -
2.已知直線y=-2x+3與拋物線y=x2相交于A、B兩點,O為坐標原點,那么△OAB的面積等于.
發布:2025/5/28 4:30:1組卷:239引用:6難度:0.5 -
3.拋物線y=ax2與直線x=1,x=2,y=1,y=2組成的正方形有公共點,則a的取值范圍是
發布:2025/5/28 4:30:1組卷:472引用:14難度:0.7
相關試卷