(1)已知α,β都為銳角,sinα=17,cos(α+β)=5314,求sinβ與cosβ的值;
(2)已知0<β<π2<α<π,且cos(α-β2)=-19,sin(α2-β)=23,求cos(α+β)的值.
1
7
5
3
14
π
2
β
2
1
9
α
2
2
3
【考點(diǎn)】兩角和與差的三角函數(shù).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:83引用:1難度:0.3
相似題
-
1.已知tanα=1,tanβ=2,則tan(α-β)=( )
A. -13B. 13C.3 D.-3 發(fā)布:2025/1/7 22:30:4組卷:13引用:2難度:0.7 -
2.已知α,β,γ∈
,sinα+sinγ=sinβ,cosβ+cosγ=cosα,則下列說法正確的是( )(0,π2)A. cos(β-α)=12B. cos(β-α)=-12C. β-α=π3D. β-α=-π3發(fā)布:2024/12/29 9:30:1組卷:102引用:6難度:0.6 -
3.已知α∈(
,π),sinα=π2,則tan(α+35)=( )π4A. -17B.7 C. 17D.-7 發(fā)布:2024/12/29 12:30:1組卷:354引用:16難度:0.7