已知函數f(x)=12x2-(a+2)x+2alnx(a>0),
(1)若曲線y=f(x)在點(1,f(1))處的切線為y=2x+b,求a+2b的值;
(2)設函數g(x)=-(a+2)x,若至少存在一個x0∈[e,4],使得f(x0)>g(x0)成立,求實數a的取值范圍.
f
(
x
)
=
1
2
x
2
-
(
a
+
2
)
x
+
2
alnx
【答案】(1)-10;(2).
(
-
2
ln
2
,
+
∞
)
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/28 8:0:9組卷:2引用:1難度:0.5
相似題
-
1.已知函數
,若關于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2A.( ,+∞)12eB.( ,12e)2e2C.( ,12e]2e2D.( ,1]2e2發布:2025/1/5 18:30:5組卷:297引用:2難度:0.4 -
2.已知函數f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發布:2024/12/29 12:30:1組卷:48難度:0.5 -
3.已知函數f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發布:2024/12/29 13:0:1組卷:188難度:0.1