試卷征集
          加入會員
          操作視頻

          如圖,BD是正方形ABCD的對角線,BC=2,邊BC在其所在的直線上平移,將通過平移得到的線段記為PQ,連接PA、QD,并過點Q作QO⊥BD,垂足為O,連接OA、OP.
          (1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
          (2)證明:OA⊥OP;
          (3)在平移變換過程中,設y=S△OPB,BP=x(0≤x≤2),求y與x之間的函數(shù)關系式,并求出y的最大值.

          【考點】四邊形綜合題
          【答案】(1)四邊形APQD是平行四邊形;
          (2)證明見解析;
          (3)當x=2時,y有最大值為2.
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
          發(fā)布:2024/9/26 18:0:2組卷:13引用:1難度:0.5
          相似題
          • 1.如圖,正方形ABCD中,在AD的延長線上取點E,F(xiàn),使DE=AD,DF=BD,連接BF分別交CD,CE于H,G下列結論正確的有
             
            .(填序號)
            ①GD=GH;②EC=2DG;③S△CDG=S四邊形DHGE; ④圖中有7個等腰三角形.

            發(fā)布:2025/5/27 4:0:1組卷:172引用:1難度:0.5
          • 2.如圖,在四邊形ABCD中,AD∥BC,∠DAB=90°,AB=6cm,BC=8cm,AD=4cm.點P從點A出發(fā)沿AD向點D勻速運動,速度是1cm/s;同時,點Q從點C出發(fā)沿CA 向點A勻速運動,速度是1cm/s,當一個點到達終點,另一個點立即停止運動.連接PQ,BP,BQ,設運動時間為t(s),解答下列問題:
            (1)當t為何值時,PQ∥CD?
            (2)設△BPQ的面積為s(cm2),求s與t之間的函數(shù)關系式;
            (3)是否存在某一時刻t,使得△BPQ的面積為四邊形ABCD面積的
            1
            2
            ?若存在,求出此時t的值;若不存在,說明理由;
            (4)連接BD,是否存在某一時刻t,使得BP平分∠ABD?若存在,求出此時t的值;若不存在,說明理由.

            發(fā)布:2025/5/26 12:0:1組卷:399引用:2難度:0.1
          • 3.在平行四邊形ABCD中,M,N分別是邊AD,AB的點,AB=kAN,AD=kAM.
            (1)如圖1,若連接MN,BD,求證:MN∥BD;
            (2)如圖2,把△AMN繞點A順時針旋轉角度α(0°<α<90°)得到△AFE,M,N的對應點分別為點E,F(xiàn),連接BE,若∠ABF=∠EBC,∠AEB=2∠DAE.
            ①直接寫出k的取值范圍;
            ②當tan∠EBC=
            1
            3
            時,求k的值.

            發(fā)布:2025/5/26 11:30:1組卷:207引用:3難度:0.2
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
          本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正