試卷征集
          加入會員
          操作視頻

          如圖,已知點M在圓O:x2+y2=4上運動,MN⊥y軸(垂足為N),點Q在NM的延長線上,且|QN|=2|MN|.
          (1)求動點Q的軌跡方程;
          (2)直線l:
          y
          =
          1
          2
          x
          +
          m
          與(1)中動點Q的軌跡交于兩個不同的點A和B,圓O上存在兩點C、D,滿足|CA|=|CB|,|DA|=|DB|,求m的取值范圍.

          【答案】(1)
          x
          2
          16
          +
          y
          2
          4
          =
          1

          (2)
          -
          2
          2
          m
          2
          2
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/10/2 2:0:1組卷:232引用:3難度:0.3
          相似題
          • 1.在平面直角坐標系xOy中,已知直線ax-y+2=0與圓C:x2+y2-2x-3=0交于A,B兩點,若鈍角△ABC的面積為
            3
            ,則實數a的值是(  )

            發布:2025/1/5 18:30:5組卷:111引用:1難度:0.6
          • 2.已知x,y滿足x2+y2=1,則
            y
            -
            2
            x
            -
            1
            的最小值為(  )

            發布:2024/12/29 10:30:1組卷:30引用:2難度:0.9
          • 3.已知圓C:x2+y2+2ay=0(a>0)截直線
            3
            x
            -
            y
            =
            0
            所得的弦長為
            2
            3
            ,則圓C與圓C':(x-1)2+(y+1)2=1的位置關系是(  )

            發布:2025/1/1 11:0:5組卷:86引用:4難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正