在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于點D.
(1)如圖1所示,點M,N分別在線段AD,AB上,且∠BMN=90°,當∠AMN=30°,AB=6時,求線段AM的長;
(2)如圖2所示,點E,F(xiàn)分別在AB,AC上,且BE=AF,求證:△DEF是等腰直角三角形;
(3)如圖3所示,點M在AD的延長線上,點N在AC上,且∠BMN=90°,求證:AB+AN=2AM.
6
2
【考點】三角形綜合題.
【答案】(1)-1;
(2)證明見解析;
(3)證明見解析.
3
(2)證明見解析;
(3)證明見解析.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 11:0:1組卷:194引用:3難度:0.2
相似題
-
1.如圖1,△ABC和△CDE都是等邊三角形,且A,C,E在同一條直線上,分別連接AD,BE.
(1)求證:AD=BE;
(2)如圖2,連接BD,若M,N,Q分別為AB,DE,BD的中點,過N作NP⊥MN與MQ的延長線交于P,求證:MP=AD;
(3)如圖3,設(shè)AD與BE交于F點,點M在AB上,MG∥AD,交BE于H,交CF的延長線于G,試判斷△FGH的形狀.發(fā)布:2025/5/24 17:0:2組卷:45引用:1難度:0.1 -
2.如圖,在△ABC中,∠A=α(0°<α≤90°),將BC邊繞點C逆時針旋轉(zhuǎn)(180°-α)得到線段CD.
(1)判斷∠B與∠ACD的數(shù)量關(guān)系并證明;
(2)將AC邊繞點C順時針旋轉(zhuǎn)α得到線段CE,連接DE與AC邊交于點M(不與點A,C重合).
①用等式表示線段DM,EM之間的數(shù)量關(guān)系,并證明;
②若AB=a,AC=b,直接寫出AM的長.(用含a,b的式子表示)發(fā)布:2025/5/24 14:0:2組卷:1301引用:9難度:0.2 -
3.(1)如圖1,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一點,AE=5,ED⊥AB,垂足為D,求AD的長.
(2)類比探究:如圖2,△ABC中,AC=14,BC=6,點D,E分別在線段AB,AC上,∠EDB=∠ACB=60°,DE=2.求AD的長.
(3)拓展延伸:如圖3,△ABC中,點D,點E分別在線段AB,AC上,∠EDB=∠ACB=60°.延長DE,BC交于點F,AD=4,DE=5,EF=6,DE<BD,=;BD=.BCAC發(fā)布:2025/5/24 16:30:1組卷:1046引用:6難度:0.1
相關(guān)試卷