牛頓迭代法是牛頓在17世紀提出的一種在實數域和復數域上近似求解方程的方法.比如,我們可以先猜想某個方程f(x)=0的其中一個根r在x=x0的附近,如圖所示,然后在點(x0,f(x0))處作f(x)的切線,切線與x軸交點的橫坐標就是x1,用x1代替x0重復上面的過程得到x2;一直繼續下去,得到x0,x1,x2,…,xn.從圖形上我們可以看到x1較x0接近r,x2較x1接近r,等等.顯然,它們會越來越逼近r.于是,求r近似解的過程轉化為求xn,若設精度為ε,則把首次滿足|xn-xn-1|<ε的xn稱為r的近似解.
已知函數f(x)=x3+(a-2)x+a,a∈R.
(1)當a=1時,試用牛頓迭代法求方程f(x)=0滿足精度ε=0.5的近似解(取x0=-1,且結果保留小數點后第二位);
(2)若f(x)-x3+x2lnx≥0,求a的取值范圍.
【考點】函數與方程的綜合運用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/7/26 8:0:9組卷:63引用:4難度:0.4
相似題
-
1.若{x|x2+px+q=0}={1,3},則p+q的值為( )
A.-3 B.3 C.-1 D.7 發布:2024/12/15 2:0:2組卷:17引用:3難度:0.8 -
2.已知直線y=-x+2分別與函數
和y=ln(2x)的圖象交于點A(x1,y1),B(x2,y2),則( )y=12exA. >2eex1+ex2B.x1x2> e4C. >0lnx1x1+x2lnx2D. ex1+ln(2x2)>2發布:2024/12/29 11:0:2組卷:245引用:10難度:0.6 -
3.已知函數f(x)=(x-1)|x-a|+4有三個不同的零點,則實數a的取值范圍是 .
發布:2024/12/29 6:30:1組卷:107引用:2難度:0.5