已知:直線AB∥CD,點M、N分別在直線AB、直線CD上,點E為平面內一點,

(1)如圖1,請寫出∠AME,∠E,∠ENC之間的數量關系,并給出證明;
(2)如圖2,利用(1)的結論解決問題,若∠AME=30°,EF平分∠MEN,NP平分∠ENC,EQ∥NP,求∠FEQ的度數;
(3)如圖3,點G為CD上一點,∠AMN=m∠EMN,∠GEK=m∠GEM,EH∥MN交AB于點H,∠GEK,∠BMN,∠GEH之間的數量關系(用含m的式子表示)是 ∠BMN+∠GEK-m∠GEH=180°.∠BMN+∠GEK-m∠GEH=180°..
【考點】平行線的性質.
【答案】∠BMN+∠GEK-m∠GEH=180°.
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:2214引用:5難度:0.3
相似題
-
1.如圖,AB∥CD,點P為CD上一點,PE平分∠DPF,若∠1=70°,則∠2的大小為( ?。?/h2>
A.50° B.55° C.60° D.65° 發布:2025/5/24 3:30:1組卷:34引用:2難度:0.6 -
2.如圖,AB∥CD,EF∥GH,∠3=∠4,若∠2=70°,則∠1的度數為( )
A.38° B.40° C.35° D.45° 發布:2025/5/24 3:30:1組卷:450引用:6難度:0.6 -
3.如圖,a∥b,含30°角的直角三角板如圖放置,當∠1=50°時,∠2的度數為( ?。?/h2>
A.95° B.100° C.105° D.110° 發布:2025/5/24 3:30:1組卷:18引用:1難度:0.7