如圖,在平面直角坐標系中,拋物線y=-12x2+bx+c與x軸交于A(-2,0)、B(4,0)兩點(點A在點B的左側(cè)),與y軸交于點C,連接AC、BC,點P為直線BC上方拋物線上一動點,連接OP交BC于點Q.
(1)求拋物線的函數(shù)表達式;
(2)當PQOQ的值最大時,求點P的坐標和PQOQ的最大值;
(3)把拋物線y=-12x2+bx+c沿射線AC方向平移5個單位得新拋物線y',M是新拋物線上一點,N是新拋物線對稱軸上一點,當以M、N、B、C為頂點的四邊形是平行四邊形時,直接寫出N點的坐標,并把求其中一個N點坐標的過程寫出來.

1
2
x
2
PQ
OQ
PQ
OQ
1
2
x
2
5
【考點】二次函數(shù)綜合題.
【答案】(1)y=-+x+4;
(2)P(2,4),的最大值為.
(3)N1(2,),N2(2,-),N3(2,-).
1
2
x
2
(2)P(2,4),
PQ
OQ
1
2
(3)N1(2,
5
2
11
2
5
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2778引用:2難度:0.3
相似題
-
1.如圖,直線
與x軸、y軸分別交于點B、A,拋物線y=-x2+bx+c經(jīng)過點B,與y軸交于點C(0,4).y=-12x+2
(1)求拋物線的函數(shù)表達式;
(2)點P是x軸上方拋物線上的動點,過點P作PD⊥x軸于點D,若以點P、D、B為頂點的三角形與△AOB相似,求點P的坐標.發(fā)布:2025/5/24 1:0:1組卷:358引用:2難度:0.3 -
2.在平面直角坐標系xOy中,拋物線y=
x2+bx+c過點A(-2,-1),B(0,-3).12
(1)求拋物線的解析式;
(2)平移拋物線,平移后的頂點為P(m,n)(m>0).
ⅰ.如果S△OBP=3,設(shè)直線x=k,在這條直線的右側(cè)原拋物線和新拋物線均呈上升趨勢,求k的取值范圍;
ⅱ.點P在原拋物線上,新拋物線交y軸于點Q,且∠BPQ=120°,求點P的坐標.發(fā)布:2025/5/24 1:0:1組卷:3109引用:3難度:0.4 -
3.如圖1,拋物線y=ax2+3ax(a為常數(shù),a<0)與x軸交于O,A兩點,點B為拋物線的頂點,點D是線段OA上的一個動點,連接BD并延長與過O,A,B三點的⊙P相交于點C,過點C作⊙P的切線交x軸于點E.
(1)①求點A的坐標;②求證:CE=DE;
(2)如圖2,連接AB,AC,BE,BO,當,∠CAE=∠OBE時,a=-233
①求證:AB2=AC?BE;②求的值.1OD-1OE發(fā)布:2025/5/24 1:0:1組卷:575引用:1難度:0.3
相關(guān)試卷