如圖,△ABC中,AB=BC=AC=6cm,點M、N分別從點A、點B同時出發,沿三角形的邊順時針運動,點M的速度為2cm/s,點N的速度為3cm/s,當點M,點N第一次相遇時,點M,點N同時停止運動,設點M,點N的運動時間為t(t>0)秒.
(1)當點M在AC上時,CM=(6-2t)cm(6-2t)cm;
當點M在CB上時,CM=(2t-6)cm(2t-6)cm(用含t的代數式表示).
(2)點N在CB上時,若△AMN為直角三角形,直接寫出t的值.
(3)連結MN,當線段MN的垂直平分線經△ABC的某一頂點時,直接寫出t的值.

【考點】三角形綜合題.
【答案】(6-2t)cm;(2t-6)cm
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2025/6/1 5:0:1組卷:325引用:5難度:0.2
相似題
-
1.如圖,AB=AC,CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD相交于點O,連接AO.
(1)不添加任何輔助線,寫出圖中所有的全等三角形.
(2)觀察猜想,AO是不是∠BAC的角平分線?如果認為是,請證明;如果認為不是,請說明理由.
(3)連接BC,如果OA=OB,求證:△ABC為等邊三角形.發布:2025/6/2 15:30:1組卷:19引用:1難度:0.3 -
2.在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,E為AB上一點(不與A,B重合)
(1)如圖1,若BC=BE,求證:CE平分∠ACD;
(2)如圖2,若AC=BC,過點B作BF⊥CE于點F,交CD于G.
①求證:AE=CG;
②當BC=BE時,BG與CF的數量關系是.發布:2025/6/2 16:0:1組卷:409引用:2難度:0.4 -
3.如圖1,在平面直角坐標系中,點A在y軸上,點B在x軸上,以AB為邊作等腰直角三角形ABC,使AB=AC,∠BAC=90°,點C在第二象限.
(1)若點A(0,a),B(b,0),且a、b滿足+b2-6b+9=0,則a=,b=,點C的坐標為;a-6
(2)如圖2,過點C作CM⊥y軸于點M,AD平分∠BAC,交x軸于點D,交CM于點N,交BC于點P,求證:CP垂直平分DN:
(3)試探究(2)中OM,OD與MN之間的關系,并說明理由.發布:2025/6/2 16:30:2組卷:63引用:1難度:0.1