已知拋物線y=ax2-(a+c)x+c(其中a≠c且a≠0).
(1)求此拋物線與x軸的交點(diǎn)坐標(biāo);(用a,c的代數(shù)式表示)
(2)若經(jīng)過(guò)此拋物線頂點(diǎn)A的直線y=-x+k與此拋物線的另一個(gè)交點(diǎn)為B(a+ca,-c),求此拋物線的解析式;
(3)點(diǎn)P在(2)中x軸上方的拋物線上,直線y=-x+k與 y軸的交點(diǎn)為C,若tan∠POB=14tan∠POC,求點(diǎn)P的坐標(biāo);
(4)若(2)中的二次函數(shù)的自變量x在n≤x<n+1(n為正整數(shù))的范圍內(nèi)取值時(shí),記它的整數(shù)函數(shù)值的個(gè)數(shù)為N,則N關(guān)于n的函數(shù)關(guān)系式為N=4nN=4n.
a
+
c
a
1
4
【考點(diǎn)】二次函數(shù)綜合題.
【答案】N=4n
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:88引用:4難度:0.3
相似題
-
1.在平面直角坐標(biāo)系中,將函數(shù)y=-x2+mx+m+1(x≤m,m為常數(shù))的圖象記為G,點(diǎn)P的坐標(biāo)為(m,-
m2+m+12).32
(1)當(dāng)點(diǎn)(0,3)在圖象G上時(shí),求m的值;
(2)當(dāng)點(diǎn)P在圖象G上時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)圖象G的最高點(diǎn)的縱坐標(biāo)與點(diǎn)P的縱坐標(biāo)的差是1時(shí),求m的值;
(4)當(dāng)m>0時(shí),將點(diǎn)P向左平移2個(gè)單位長(zhǎng)度得到Q,連結(jié)PQ,以PQ為邊向上方作矩形PQMN,使PN=1.當(dāng)圖象G與矩形PQMN只有兩個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.發(fā)布:2025/6/7 6:30:1組卷:125引用:1難度:0.1 -
2.如圖1,拋物線y=ax2+bx+4與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,AB=8,B點(diǎn)橫坐標(biāo)為2,延長(zhǎng)矩形OBDC的DC邊交拋物線于E.
(1)求拋物線的解析式;
(2)如圖2,若點(diǎn)P是直線EO上方的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線交直線EO于點(diǎn)M,求PM的最大值;
(3)如圖3,如果點(diǎn)F是拋物線對(duì)稱軸l上一點(diǎn),拋物線上是否存在點(diǎn)G,使得以F,G,A,C為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有滿足條件的點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/7 7:0:1組卷:565引用:8難度:0.1 -
3.在平面直角坐標(biāo)系中,直線AB與拋物線y=ax2+bx+c交于A,B(點(diǎn)A在點(diǎn)B的左側(cè))兩點(diǎn),點(diǎn)C是該拋物線上任意一點(diǎn),過(guò)C點(diǎn)作平行于y軸的直線交AB于D,分別過(guò)點(diǎn)A,B作直線CD的垂線,垂足分別為點(diǎn)E,F(xiàn).
特例感悟:
(1)已知:a=-2,b=4,c=6.
①如圖①,當(dāng)點(diǎn)C的橫坐標(biāo)為2,直線AB與x軸重合時(shí),CD=,|a|?AE?BF=.
②如圖②,當(dāng)點(diǎn)C的橫坐標(biāo)為1,直線AB∥x軸且過(guò)拋物線與y軸的交點(diǎn)時(shí),CD=,|a|?AE?BF=.
③如圖③,當(dāng)點(diǎn)C的橫坐標(biāo)為2,直線AB的解析式為y=x-3時(shí),CD=,|a|?AE?BF=.
猜想論證:
(2)由(1)中三種情況的結(jié)果,請(qǐng)你猜想在一般情況下CD與|a|?AE?BF之間的數(shù)量關(guān)系,并證明你的猜想.拓展應(yīng)用.
(3)若a=-1,點(diǎn)A,B的橫坐標(biāo)分別為-4,2,點(diǎn)C在直線AB的上方的拋物線上運(yùn)動(dòng)(點(diǎn)C不與點(diǎn)A,B重合),在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,利用(2)中的結(jié)論求出△ACB的最大面積.發(fā)布:2025/6/7 7:0:1組卷:21引用:2難度:0.3