如圖1,△ABC中,AB=AC,點(diǎn)D是線段BC上一動(dòng)點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.

(1)若∠BAC=90°,
①∠BCA=45°45°;
②判斷線段BC,CE之間有怎樣的位置關(guān)系并說明理由;
(2)設(shè)∠BAC=x°,∠BCE=y°,則x,y之間的數(shù)量關(guān)系為 y=180-xy=180-x;
(3)如圖2,當(dāng)CE∥AB時(shí),若線段BC=3,直接寫出四邊形ADCE周長的最小值.
【考點(diǎn)】三角形綜合題.
【答案】45°;y=180-x
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/7 8:0:9組卷:42引用:1難度:0.5
相似題
-
1.如圖,△AOB中,OA=OB=6,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到△COD.OC與AB交于點(diǎn)G,CD分別交OB、AB于點(diǎn)E、F.
(1)∠A與∠D的數(shù)量關(guān)系是:∠A ∠D;
(2)求證:△AOG≌△DOE;
(3)當(dāng)A,O,D三點(diǎn)共線時(shí),恰好OB⊥CD,求此時(shí)CD的長.發(fā)布:2025/5/25 10:0:1組卷:82引用:1難度:0.2 -
2.如圖,△ABC中,∠ACB=90°,CB=CA,CE⊥AB于E,點(diǎn)F是CE上一點(diǎn),連接AF并延長交BC于點(diǎn)D,CG⊥AD于點(diǎn)G,連接EG.
(1)求證:CD2=DG?DA;
(2)如圖1,若點(diǎn)D是BC中點(diǎn),求證:CF=2EF;
(3)如圖2,若GC=2,GE=2,求證:點(diǎn)F是CE中點(diǎn).2發(fā)布:2025/5/25 11:0:2組卷:265引用:2難度:0.1 -
3.【閱讀理解】
截長補(bǔ)短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法.截長就是在長邊上截取一條線段與某一短邊相等,補(bǔ)短是通過在一條短邊上延長一條線段與另一短邊相等,從而解決問題.
(1)如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC下方一點(diǎn),∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.
解題思路:延長DC到點(diǎn)E,使CE=BD,連接AE,根據(jù)∠BAC+∠BDC=180°,可證∠ABD=∠ACE易證得△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而探尋線段DA、DB、DC之間的數(shù)量關(guān)系.
根據(jù)上述解題思路,請直接寫出DA、DB、DC之間的數(shù)量關(guān)系是 ;
【拓展延伸】
(2)如圖2,在Rt△ABC中,∠BAC=90°,AB=AC.若點(diǎn)D是邊BC下方一點(diǎn),∠BDC=90°,探索線段DA、DB、DC之間的數(shù)量關(guān)系,并說明理由;
【知識(shí)應(yīng)用】
(3)如圖3,兩塊斜邊長都為14cm的三角板,把斜邊重疊擺放在一起,則兩塊三角板的直角頂點(diǎn)之間的距離PQ的長為 cm.發(fā)布:2025/5/25 9:0:1組卷:427引用:6難度:0.3