如圖,函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(-1,0),B(0,3).
(1)求a、b滿足的等量關(guān)系式;
(2)設(shè)拋物線y=ax2+bx+c與x軸的另一個交點為C,拋物線的頂點為D,連接AB,BC,BD,CD.當(dāng)△BCD∽△OBA時,求該二次函數(shù)的解析式;
(3)在(2)的條件下,當(dāng)0≤x≤3時,函數(shù)y=ax2+bx+c的最大值是 44;最小值是 00.設(shè)函數(shù)y在t≤x≤t+1內(nèi)的最大值為p,最小值為q,若p-q=3,求t的值.
【考點】二次函數(shù)綜合題.
【答案】4;0
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:264引用:1難度:0.4
相似題
-
1.如圖,已知拋物線l:y=-x2+2x+3與x軸交于點A,點B(A在B的左側(cè)),與y軸交于點C.l'是l關(guān)于x軸對稱的拋物線.
(1)求拋物線l'的解析式;
(2)拋物線l'與y軸交于點D,點P是拋物線l'的一個動點,過點P作x軸的垂線交BD所在的直線于點M.當(dāng)以C,D,M,P為頂點的四邊形是平行四邊形時,求點M的坐標(biāo).發(fā)布:2025/5/24 6:30:2組卷:406引用:1難度:0.3 -
2.如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸交于A,B兩點,與y軸交于C點,連接BC.P是直線BC上方拋物線上一動點,連接PA,交BC于點D.其中BC=AB,tan∠ABC=
.34
(1)求拋物線的解析式;
(2)求的最大值;PDDA
(3)若函數(shù)y=ax2+bx+3在(其中m-12≤x≤m+12)范圍內(nèi)的最大值為s,最小值為t,且m≤56≤s-t<12,求m的取值范圍.32發(fā)布:2025/5/24 6:0:2組卷:213引用:1難度:0.1 -
3.如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c經(jīng)過點A(-1,0),B(
,0),直線y=x+52與拋物線交于C,D兩點,點P是拋物線在第四象限內(nèi)圖象上的一個動點.過點P作PG⊥CD,垂足為G,PQ∥y軸,交x軸于點Q.12
(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)PG+PQ取得最大值時,求點P的坐標(biāo)和2PG+PQ的最大值;2
(3)將拋物線向右平移個單位得到新拋物線,M為新拋物線對稱軸上的一點,點N是平面內(nèi)一點.當(dāng)(2)中134PG+PQ最大時,直接寫出所有使得以點A,P,M,N為頂點的四邊形是菱形的點N的坐標(biāo),并把求其中一個點N的坐標(biāo)的過程寫出來.2發(fā)布:2025/5/24 5:0:1組卷:1766引用:4難度:0.3
相關(guān)試卷