試卷征集
          加入會員
          操作視頻

          從一個多邊形的一個頂點出發(fā),最多可畫2023條對角線,則它是(  )邊形

          【考點】多邊形的對角線
          【答案】C
          【解答】
          【點評】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
          發(fā)布:2024/7/11 8:0:9組卷:146引用:3難度:0.8
          相似題
          • 1.大自然中有許多小動物都是“小數(shù)學(xué)家”,如圖1,蜜蜂的蜂巢結(jié)構(gòu)非常精巧、實用而且節(jié)省材料,多名學(xué)者通過觀測研究發(fā)現(xiàn):蜂巢巢房的橫截面大都是正六邊形.如圖2,一個巢房的橫截面為正六邊形ABCDEF,若對角線AD的長約為8mm,則正六邊形ABCDEF的邊長為(  )

            發(fā)布:2025/5/24 11:0:1組卷:1332引用:22難度:0.5
          • 2.歐拉是18世紀瑞士著名的數(shù)學(xué)家,他發(fā)現(xiàn)不論什么形狀的凸多面體.其頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個固定的關(guān)系式,被稱為多面體歐拉定理.請你觀察下列幾種簡單多面體模型,解答下列問題.
            (1)【公式發(fā)現(xiàn)】根據(jù)上面的多面體模型,完成表格中的空格:
            多面體編號 頂點數(shù)(V) 面數(shù)(F) 棱數(shù)(E)
            1 4 4 6
            2 8 6 12
            3 6 8 12
            4 9 8

            你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)和棱數(shù)(E)之間存在的關(guān)系式是

            (2)[公式運用]如圖請計算正十二面體的頂點數(shù)和棱數(shù).
            (3)[公式綜合]已知某個玻璃飾品的外形是簡單多面體,它的外表面是由三角形和六邊形兩種多邊形排接而成,且有18個頂點,每個頂點處都有4條棱,設(shè)該多面體外表面三角形的個數(shù)為m個,六邊形的個數(shù)為n個,求m+n的值.
            (4)[定理應(yīng)用]有一種足球是由數(shù)塊黑白相間的牛皮縫制而成,黑皮為正五邊形,白皮為正六邊形,且邊長都相等,請利用歐拉公式分別求出正五邊形、正六邊形個數(shù).

            發(fā)布:2025/5/24 15:30:1組卷:143引用:1難度:0.3
          • 3.一個n邊形從一個頂點出發(fā)最多引出7條對角線,則n的值為

            發(fā)布:2025/5/24 0:30:1組卷:515引用:3難度:0.8
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正