從某個(gè)角度觀察籃球(如圖1),可以得到一個(gè)對(duì)稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長(zhǎng)八等分,AB=12BC=CD,則該雙曲線的離心率為( )
AB
=
1
2
BC
=
CD
2 | 6 2 | 3 | 4 7 7 |
【考點(diǎn)】求雙曲線的離心率.
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/21 9:30:1組卷:83引用:4難度:0.7
相似題
-
1.已知F1、F2為雙曲線C1:
=1(a>0,b>0)的焦點(diǎn),P為x2+y2=c2與雙曲線C1的交點(diǎn),且有tan∠PF1F2=x2a2-y2b2,則該雙曲線的離心率為( )13A. 102B. 173C. 2D. 3發(fā)布:2024/12/19 0:0:2組卷:70引用:4難度:0.6 -
2.已知雙曲線
=1(a>0,b>0)的一條漸近線的方程是y=x2a2-y2b2x,則該雙曲線的離心率為( )32A. 32B. 52C.2 D. 72發(fā)布:2025/1/5 18:30:5組卷:228引用:3難度:0.7 -
3.設(shè)a>1,則雙曲線
的離心率e的取值范圍是( )x2a2-y2(a+1)2=1A. (2,2)B. (2,5)C.(2,5) D. (2,5)發(fā)布:2024/12/29 0:0:2組卷:852引用:18難度:0.7