如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,D,E兩點(diǎn)分別在AB和BC的延長(zhǎng)線上運(yùn)動(dòng),且始終保持CE=2AD,連接DE交AC于點(diǎn)F,過(guò)點(diǎn)D作DG⊥AC,垂足為G.
(1)如圖(1),若∠BED=∠BAC,求AD的長(zhǎng);
(2)如圖(2),求證:FG的長(zhǎng)是定值;
(3)如圖(2),若F是AC的中點(diǎn),直接寫出tan∠DFG的值.
?
【考點(diǎn)】三角形綜合題.
【答案】(1);
(2)證明見(jiàn)解析;
(3).
3
2
(2)證明見(jiàn)解析;
(3)
3
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/1 8:0:8組卷:107引用:1難度:0.1
相似題
-
1.如圖,△AOB中,OA=OB=6,將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到△COD.OC與AB交于點(diǎn)G,CD分別交OB、AB于點(diǎn)E、F.
(1)∠A與∠D的數(shù)量關(guān)系是:∠A ∠D;
(2)求證:△AOG≌△DOE;
(3)當(dāng)A,O,D三點(diǎn)共線時(shí),恰好OB⊥CD,求此時(shí)CD的長(zhǎng).發(fā)布:2025/5/25 10:0:1組卷:82引用:1難度:0.2 -
2.如圖,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的頂點(diǎn)A在△ECD的斜邊DE上,連接DB.
(1)證明:△EAC≌△DBC;
(2)當(dāng)點(diǎn)A在線段ED上運(yùn)動(dòng)時(shí),猜想AE、AD和AC之間的關(guān)系,并證明.
(3)在A的運(yùn)動(dòng)過(guò)程中,當(dāng),AE=2時(shí),求△ACM的面積.AD=6發(fā)布:2025/5/25 8:30:2組卷:376引用:5難度:0.1 -
3.【閱讀理解】
截長(zhǎng)補(bǔ)短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法.截長(zhǎng)就是在長(zhǎng)邊上截取一條線段與某一短邊相等,補(bǔ)短是通過(guò)在一條短邊上延長(zhǎng)一條線段與另一短邊相等,從而解決問(wèn)題.
(1)如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC下方一點(diǎn),∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.
解題思路:延長(zhǎng)DC到點(diǎn)E,使CE=BD,連接AE,根據(jù)∠BAC+∠BDC=180°,可證∠ABD=∠ACE易證得△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而探尋線段DA、DB、DC之間的數(shù)量關(guān)系.
根據(jù)上述解題思路,請(qǐng)直接寫出DA、DB、DC之間的數(shù)量關(guān)系是 ;
【拓展延伸】
(2)如圖2,在Rt△ABC中,∠BAC=90°,AB=AC.若點(diǎn)D是邊BC下方一點(diǎn),∠BDC=90°,探索線段DA、DB、DC之間的數(shù)量關(guān)系,并說(shuō)明理由;
【知識(shí)應(yīng)用】
(3)如圖3,兩塊斜邊長(zhǎng)都為14cm的三角板,把斜邊重疊擺放在一起,則兩塊三角板的直角頂點(diǎn)之間的距離PQ的長(zhǎng)為 cm.發(fā)布:2025/5/25 9:0:1組卷:427引用:6難度:0.3