如圖,四邊形OABC在平面直角坐標(biāo)系中,AB∥x軸,AB=8cm,OC=14cm,∠ABC=120°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿A→B→C運(yùn)動;點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s速度向點(diǎn)O運(yùn)動,當(dāng)點(diǎn)P、Q中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)也停止運(yùn)動.設(shè)點(diǎn)P的運(yùn)動時(shí)間為t秒.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)t取何值時(shí),四邊形PBCQ為平行四邊形?
(3)在BC上是否存在點(diǎn)P,使APQC為以QC為斜邊的直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【考點(diǎn)】四邊形綜合題.
【答案】(1)B .
(2)當(dāng) 時(shí),四邊形PBCQ為平行四邊形.
(3)存在,.
(
8
,
6
3
)
(2)當(dāng)
t
=
8
3
s
(3)存在,
P
(
12
,
2
3
)
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/3 8:0:9組卷:13引用:1難度:0.3
相似題
-
1.(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為.
(2)【拓展探究】
在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),請判斷線段BE與AF的數(shù)量關(guān)系,并就圖2的情形說明理由.
(3)【問題解決】
當(dāng)AB=AC=2,且第(2)中的正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí),請直接寫出線段AF的長.發(fā)布:2025/5/24 21:30:1組卷:328引用:4難度:0.2 -
2.知識再現(xiàn):已知,如圖1,四邊形ABCD是正方形,點(diǎn)M、N分別在邊BC、CD上,連接AM、AN、MN,且∠MAN=45°,延長CB至G使BG=DN,連接AG,根據(jù)三角形全等的知識,我們可以證明MN=BM+DN.
知識探究:(1)如圖1,作AH⊥MN,垂足為點(diǎn)H,猜想AH與AB有什么數(shù)量關(guān)系?并進(jìn)行證明.
知識運(yùn)用:(2)如圖2,四邊形ABCD是正方形,E是邊BC的中點(diǎn),F(xiàn)為邊CD上一點(diǎn),且∠FEC=2∠BAE,AB=24,求DF的長.
知識拓展:(3)已知∠BAC=45°,AD⊥BC于點(diǎn)D,且BD=2,AD=6,求CD的長.發(fā)布:2025/5/24 21:0:1組卷:268引用:2難度:0.4 -
3.在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A(0,2),C(2
,0),點(diǎn)D是對角線AC上一點(diǎn)(不與A、C重合),連接BD,作DE⊥BD,交x軸于點(diǎn)E,以線段DE、DB為鄰邊作矩形BDEF,連接BE,K為BE的中點(diǎn),分別連接DK,CK.3
(1)直接寫出點(diǎn)B的坐標(biāo);
(2)求證:DK=CK;
(3)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長;若不存在,請說明理由.發(fā)布:2025/5/24 22:30:1組卷:13引用:1難度:0.4