類比探究:
問(wèn)題探究:(1)如圖1,△ABC和△ADE為等腰直角三角形,∠BAC=90°,∠DAE=90°,連接BD、CE、CD,M、N、F分別為:DE、BC、CD的中點(diǎn),連接MF,NF.問(wèn):線段MF與NF的關(guān)系:MF=NF,MF⊥NFMF=NF,MF⊥NF.
方法遷移:(2)如圖2,如果△ABC和△ADE換為一般直角三角形,∠BAC=90°,∠DAE=90°,∠ABC=30°,∠ADE=30°,其他條件不變,問(wèn)題(1)結(jié)論是否成立,請(qǐng)證明你的結(jié)論.
拓展創(chuàng)新:(3)若AC=4,AE=2,其他條件與(2)中一致,連接MN,如果把△ADE繞著點(diǎn)A旋轉(zhuǎn)一定的角度,MN的長(zhǎng)度也會(huì)發(fā)生變化,請(qǐng)直接寫(xiě)出MN的最大值.

【考點(diǎn)】幾何變換綜合題.
【答案】MF=NF,MF⊥NF
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:202引用:1難度:0.2
相似題
-
1.如圖,△ABC是等腰直角三角形,∠ACB=90°,
,點(diǎn)D為平面內(nèi)任意一點(diǎn),將線段CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段CE,連接AE.BC=25
(1)若點(diǎn)D為△ABC內(nèi)部任意一點(diǎn)時(shí).
①如圖1,判斷線段AE與BD的數(shù)量關(guān)系并給出證明;
②如圖2,連接DE,當(dāng)點(diǎn)E,D,B在同一直線上且BD=2時(shí),求線段CD的長(zhǎng);
(2)如圖3,直線AE與直線BD相交于點(diǎn)P,當(dāng)AD=AC時(shí),延長(zhǎng)AC到點(diǎn)F,使得CF=AC,連接PF,請(qǐng)直接寫(xiě)出PF的取值范圍.發(fā)布:2025/5/22 2:0:8組卷:560引用:1難度:0.3 -
2.如圖,在△ABC中,AB=AC,∠BAC=90°,D為線段BC上一點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,作射線CE.
(1)求證:△BAD≌△CAE,并求∠BCE的度數(shù);
(2)若F為DE中點(diǎn),連接AF,連接CF并延長(zhǎng),交射線BA于點(diǎn)G.當(dāng)BD=2,DC=1時(shí),
①求AF的長(zhǎng);
②直接寫(xiě)出CG的長(zhǎng).發(fā)布:2025/5/22 4:30:1組卷:516引用:4難度:0.5 -
3.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DE,CD,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想:
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明:
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,PM,PN,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸:
若AD=4,AB=10,△ADE繞點(diǎn)A在平面內(nèi)旋轉(zhuǎn)過(guò)程中,請(qǐng)求出△PMN的面積取得最大值時(shí)CD的長(zhǎng).發(fā)布:2025/5/22 2:0:8組卷:310引用:4難度:0.1