已知二次函數(shù)y=ax2+bx-3.?
(1)若函數(shù)圖象經(jīng)過(guò)點(diǎn)(1,-4),(-1,0),求拋物線的解析式;
(2)若2a-b=1,對(duì)于任意不為零的實(shí)數(shù)a,是否存在一條直線y=kx+t(k≠0),始終與函數(shù)圖象交于A,B兩個(gè)定點(diǎn),若存在,求出該直線的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖,在(2)的條件下,若a>0,M、A兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,點(diǎn)P為A,B之間的拋物線上一動(dòng)點(diǎn),連接MP交AB于點(diǎn)Q,且PQMQ的最大值為13,求拋物線的函數(shù)解析式.
PQ
MQ
1
3
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-3;
(2)y=-x-3;
(3)y=x2+x-3.
(2)y=-x-3;
(3)y=x2+x-3.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:459引用:1難度:0.1
相似題
-
1.我們不妨約定:在平面直角坐標(biāo)系中,若某函數(shù)圖象上至少存在不同的兩點(diǎn)關(guān)于y軸對(duì)稱,則把該函數(shù)稱之為“T函數(shù)”,其圖象上關(guān)于y軸對(duì)稱的不同兩點(diǎn)叫做一對(duì)“T點(diǎn)”.根據(jù)該約定,完成下列各題.
(1)若點(diǎn)A(1,r)與點(diǎn)B(s,4)是關(guān)于x的“T函數(shù)”y=的圖象上的一對(duì)“T點(diǎn)”,則r=,s=,t=(將正確答案填在相應(yīng)的橫線上);-4x(x<0)tx2(x≥0,t≠0,t是常數(shù))
(2)關(guān)于x的函數(shù)y=kx+p(k,p是常數(shù))是“T函數(shù)”嗎?如果是,指出它有多少對(duì)“T點(diǎn)”如果不是,請(qǐng)說(shuō)明理由;
(3)若關(guān)于x的“T函數(shù)”y=ax2+bx+c(a>0,且a,b,c是常數(shù))經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且與直線l:y=mx+n(m≠0,n>0,且m,n是常數(shù))交于M(x1,y1),N(x2,y2)兩點(diǎn),當(dāng)x1,x2滿足(1-x1)-1+x2=1時(shí),直線l是否總經(jīng)過(guò)某一定點(diǎn)?若經(jīng)過(guò)某一定點(diǎn),求出該定點(diǎn)的坐標(biāo);否則,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/3 10:30:2組卷:4124引用:5難度:0.1 -
2.在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+4(a<0)的圖象與x軸交于點(diǎn)A(-2,0)和B(4,0),與y軸交于點(diǎn)C,直線BC與對(duì)稱軸交于點(diǎn)D.
(1)求二次函數(shù)的解析式;
(2)若拋物線y=ax2+bx+4(a<0)的對(duì)稱軸上有一點(diǎn)M,以O(shè)、C、D、M為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)M的坐標(biāo).發(fā)布:2025/6/3 9:0:1組卷:465引用:3難度:0.5 -
3.如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式.
(2)點(diǎn)D為第一象限內(nèi)拋物線上的一動(dòng)點(diǎn),作DE⊥x軸于點(diǎn)E,交BC于點(diǎn)F,過(guò)點(diǎn)F作BC的垂線與拋物線的對(duì)稱軸和y軸分別交于點(diǎn)G,H,設(shè)點(diǎn)D的橫坐標(biāo)為m.
①求DF+HF的最大值;
②連接EG,是否存在點(diǎn)D,使△EFG是等腰三角形.若存在,直接寫出m的值;若不存在,說(shuō)明理由.發(fā)布:2025/6/3 9:30:1組卷:475引用:2難度:0.2