問題背景:(1)如圖①,已知△ABC∽△ADE,點D在線段BE上,求證:△ABD∽△ACE;
嘗試運用:(2)如圖②,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,點D在BC邊上,
①求BDCE的值;②若CD=3BD,求AECE的值.
拓展創(chuàng)新:(3)如圖③,在四邊形ABCD中,∠BAC=90°,∠ADC=∠ACB=60°,BD=53,CD=3,直接寫出AD的長.

BD
CE
3
AE
CE
3
【考點】相似形綜合題.
【答案】(1)證明見解答過程;
(2)①=;
②=;
(3)AD=2.
(2)①
BD
CE
3
②
AE
CE
10
2
(3)AD=2
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:483引用:2難度:0.3
相似題
-
1.(1)閱讀解決
華羅庚是我國著名的數(shù)學家,他推廣的優(yōu)選法,就是以黃金分割法為指導,用最可能少的試驗次數(shù),盡快找到生產(chǎn)和科學實驗中最優(yōu)方案的一種科學試驗方法.
黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,這個比例被公認為最能引起美感的比例,因此被稱為黃金分割.
如圖①,點B把線段AC分成兩部分,如果=BCAB,那么稱點B為線段AC的黃金分割點,它們的比值為ABAC.5-12
在圖①中,若AB=12m,則BC的長為 cm;
(2)問題解決
如圖②,用邊長為40m的正方形紙片進行如下操作:對折正方形ABCD得折痕EF,連接CE,將CB折疊到CE上,點B對應點為H,折痕為CG.
證明:G是AB的黃金分割點;
(3)拓展探究
如圖③在邊長為m的正方形ABCD的邊AD上任取點E(AE>DE),連接BE,作CF⊥BE,交AB于點F,延長EF,CB交于點P.發(fā)現(xiàn)當PB與BC滿足某種關系時,E、F恰好分別是AD、AB的黃金分割點.請猜想這一發(fā)現(xiàn),并說明理由,發(fā)布:2025/5/25 8:0:2組卷:188引用:1難度:0.3 -
2.如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點.
(1)求證:△ABE∽△ECM;
(2)當DE⊥BC時,
①求CM的長;
②直接寫出重疊部分的面積;
(3)在△DEF運動過程中,當重疊部分構(gòu)成等腰三角形時,求BE的長.發(fā)布:2025/5/25 10:30:1組卷:659引用:3難度:0.2 -
3.已知正方形ABCD中,AB=a.E是BC邊上一點(不與B,C重合),BE=b,連接AE,作點B關于AE的對稱點F.連接AF,BF,CF,DF.
(1)求∠BFD的度數(shù).
(2)當△DFC是直角三角形時,求證:BF是CF和DF的比例中項.
(3)在(2)的條件下,求tan∠FDC以及a:b的值.發(fā)布:2025/5/25 9:0:1組卷:249引用:1難度:0.3