試卷征集
          加入會員
          操作視頻

          如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA邊上的中點,閱讀下列材料,
          (1)連接AC、BD,由三角形中位線的性質定理可證四邊形EFGH是
          平行四邊形
          平行四邊形

          (2)對角線AC、BD滿足條件
          AC⊥BD
          AC⊥BD
          時,四邊形EFGH是矩形;
          (3)對角線AC、BD滿足條件
          AC=BD
          AC=BD
          時,四邊形EFGH是菱形;
          (4)對角線AC、BD滿足條件
          AC⊥BD且AC=BD
          AC⊥BD且AC=BD
          時,四邊形EFGH是正方形.

          【答案】平行四邊形;AC⊥BD;AC=BD;AC⊥BD且AC=BD
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:322引用:2難度:0.7
          相似題
          • 1.如圖,在△ABC中,AB=AC=5,BC=4,AD平分∠BAC交BC于點D,點E為AC的中點,連接DE,則△CDE的周長為(  )

            發布:2025/6/8 0:30:1組卷:174引用:5難度:0.5
          • 2.如圖所示,DE為△ABC的中位線,點F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為

            發布:2025/6/7 22:30:2組卷:3989引用:91難度:0.7
          • 3.如圖,在△ABC中,M是BC邊上的中點,AP是∠BAC的平分線,BP⊥AP于點P,已知AB=16,AC=24,那么PM的長為

            發布:2025/6/8 0:0:1組卷:805引用:4難度:0.6
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正