如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的頂點(diǎn)A在x軸的正半軸上,點(diǎn)C的坐標(biāo)為(3,4),點(diǎn)D從原點(diǎn)O出發(fā)沿O→A→B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止,點(diǎn)E從點(diǎn)A出發(fā)沿A→B→C隨D運(yùn)動(dòng),且始終保持∠CDE=∠COA.設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)當(dāng)DE∥OB時(shí),求證:△OCD≌△BCE.
(2)若點(diǎn)E在BC邊上,當(dāng)△CDE為等腰三角形時(shí),求BE的長.
(3)若點(diǎn)D的運(yùn)動(dòng)速度為每秒1個(gè)單位,是否存在這樣的t,使得以點(diǎn)C,D,E為頂點(diǎn)的三角形與△OCD相似?若存在,直接寫出所有符合條件的t;若不存在,請(qǐng)說明理由.
【考點(diǎn)】相似形綜合題.
【答案】(1)見解答;
(2)或1或;
(3)或.
(2)
5
6
55
36
(3)
11
-
21
2
≤
t
≤
5
t
=
21
+
9
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:212引用:3難度:0.1
相似題
-
1.如圖,將正方形紙片ABCD沿PQ折疊,使點(diǎn)C的對(duì)稱點(diǎn)E落在邊AB上,點(diǎn)D的對(duì)稱點(diǎn)為點(diǎn)F,EF交AD于點(diǎn)G,連接CG交PQ于點(diǎn)H,連接CE,EH.
(1)求證:△PBE∽△QFG;
(2)求∠ECG的度數(shù);
(3)求證:EG2-CH2=GQ?GD.發(fā)布:2025/5/25 21:0:1組卷:400引用:2難度:0.3 -
2.問題提出
如圖(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,點(diǎn)E在△ABC內(nèi)部,直線AD與BE交于點(diǎn)F.線段AF,BF,CF之間存在怎樣的數(shù)量關(guān)系?
問題探究
(1)先將問題特殊化如圖(2),當(dāng)點(diǎn)D,F(xiàn)重合時(shí),直接寫出一個(gè)等式,表示AF,BF,CF之間的數(shù)量關(guān)系;
(2)再探究一般情形如圖(1),當(dāng)點(diǎn)D,F(xiàn)不重合時(shí),證明(1)中的結(jié)論仍然成立.
問題拓展
如圖(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常數(shù)),點(diǎn)E在△ABC內(nèi)部,直線AD與BE交于點(diǎn)F.直接寫出一個(gè)等式,表示線段AF,BF,CF之間的數(shù)量關(guān)系.發(fā)布:2025/5/25 17:30:1組卷:5696引用:14難度:0.6 -
3.【證明體驗(yàn)】(1)如圖1,△ABC中,D為BC邊上任意一點(diǎn),作DE⊥AC于E,若∠CDE=
∠A,求證:△ABC為等腰三角形;12
【嘗試應(yīng)用】
(2)如圖2,四邊形ABCD中,∠D=90°,AD=CD,AE平分∠BAD,∠BCD+∠EAD=180°,若DE=2,AB=6,求AE的長;
【拓展延伸】
(3)如圖3,△ABC中,點(diǎn)D在AB邊上滿足CD=BD,∠ACB=90°+∠B,若AC=1012,BC=20,求AD的長.3發(fā)布:2025/5/25 20:0:1組卷:497引用:1難度:0.3