試卷征集
          加入會員
          操作視頻

          如圖,在平行四邊形ABCD中,點E是BC邊上的動點,已知AB=4,BC=6,現將△ABE沿AE折疊,點B′是點B的對應點,

          (1)如圖1,當點B′恰好落在AD邊上時,求:CE的值.
          (2)如圖2,若∠B=60°,點B′落在DE上時,求B′D(保留根號).
          (3)如圖2,若∠EAD=m∠BAD,∠EDA=(1-2m)∠CDA,當∠AED的值與∠CDA的度數無關時,求m的值并求出此時∠AED的度數.

          【考點】四邊形綜合題
          【答案】(1)CE=2;
          (2)
          B
          D
          =
          2
          6
          -
          2

          (3)
          m
          =
          1
          3
          ;∠AED=120°.
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:385引用:3難度:0.4
          相似題
          • 1.如圖1,正方形ABCD中,AC為對角線,點P在線段AC上運動,以DP為邊向右作正方形DPFE,連接CE;
            【初步探究】
            (1)則AP與CE的數量關系是
            ,AP與CE的夾角度數為

            【探索發現】
            (2)點P在線段AC及其延長線上運動時,如圖1,圖2,探究線段DC,PC和CE三者之間的數量關系,并說明理由;
            【拓展延伸】
            (3)點P在對角線AC的延長線上時,如圖3,連接AE,若AB=
            2
            2
            ,AE=
            2
            13
            ,求四邊形DCPE的面積.

            發布:2025/5/26 8:0:5組卷:2163引用:9難度:0.3
          • 2.閱讀與思考
            平移是初中幾何變換之一,它可以將線段和角平移到一個新的位置,從而把分散的條件集中到一起,使問題得以解決.平移包括以下三個方面的應用:一、分散的條件集中;二、復雜圖形變得簡單明了;三、轉化題目的形式.以下面例題來說明.
            如圖1,在正方形中ABCD中,E,F,G分別是BC,CD,AD上的點,GE⊥BF于點O,那么GE=BF.
            證明過程如下:
            ∵GE⊥BF于點O,
            ∴∠GOB=90°,
            過點A作AH∥GE交BC于點H,交BF于點M.
            ∴∠AMB=∠GOB=90°,
            ∴∠ABM+∠BAM=90°,
            ∵四邊形ABCD為正方形,
            ∴AG∥HE,AB=BC,∠ABC=∠C=90°,
            ∴∠ABM+∠FBC=∠ABC=90°,
            ∴∠BAM=∠FBC,
            ∴△ABH≌△BCF(依據1),
            ∴AH=BF,
            ∵AH∥GE,AG∥HE,
            ∴四邊形AHEG為平行四邊形(依據2),
            ∴AH=GE,
            ∴GE=BF.
            【閱讀理解】填空:上述閱讀材料中“依據1”是
            ,“依據2”是

            【遷移嘗試】如圖2,在5×6的正方形網格中,點A,B,C,D為格點,AB交CD于點M.則∠AMC的度數為

            【拓展應用】如圖3,點P是線段AB上的動點,分別以AP,BP為邊在AB的同側作正方形APCD與正方形PBEF,連接DE分別交線段BC,PC于點M,N.求∠DMC的度數.

            發布:2025/5/26 9:0:1組卷:217引用:2難度:0.3
          • 3.在正方形ABCD中,對角線AC、BD相交于點O,F是正方形ABCD內一點,∠BFC=90°,將△BFC繞點C按順時針方向旋轉一定角度得到△DEC,點B、F的對應點分別為點D、E,則直線EF經過點O.
            【方法感知】如圖①,當點F在△AOB內時,過點D作DG⊥DE交EF于點G,則∠DGE的大小為
            度,DE、OE、OF的數量關系為

            【類比遷移】如圖②,當點F在△COD內時,試判斷DE、OE、OF之間的數量關系,并說明理由.
            【拓展應用】如圖③,將正方形ABCD改為菱形,對角線AC、BD相交于點O,F是△COD內一點,∠BFC=90°.若將△BFC繞點C按順時針方向旋轉60°得到△DEC,點B、F的對應點分別為點D、E.若DE=2
            2
            ,則OE+OF=

            發布:2025/5/26 7:30:2組卷:160引用:1難度:0.3
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正