在菱形ABCD中,∠BAD=α,E為對角線AC上的一點(不與A,C重合),將射線EB繞點E順時針旋轉β角之后,所得射線與直線AD交于F點.試探究線段EB與EF的數量關系.
(1)如圖1,當α=β=90°時,EB與EF的數量關系為 EB=EFEB=EF;
(2)如圖2,當α=60°,β=120°時,
①依題意補全圖形;
②請幫小宇繼續探究(1)的結論是否成立.若成立,請給出證明;若不成立,請舉出反例說明;
(3)在此基礎上對一般的圖形進行了探究,設∠ABE=γ,若旋轉后所得的線段EF與EB的數量關系滿足(1)中的結論,請直接寫出角α,β,γ滿足的關系:當點F落在點D處時,12α+12β+γ=180°,其他情況:無論γ為多少度時,α+β=180°當點F落在點D處時,12α+12β+γ=180°,其他情況:無論γ為多少度時,α+β=180°.

1
2
1
2
1
2
1
2
【考點】四邊形綜合題.
【答案】EB=EF;當點F落在點D處時,α+β+γ=180°,其他情況:無論γ為多少度時,α+β=180°
1
2
1
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:32引用:1難度:0.1
相似題
-
1.定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC=90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發現損矩形中有公共邊的兩個三角形角的特點:在公共邊的同側的兩個角是相等的.如圖1中:△ABC和△ABD有公共邊AB,在AB同側有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側有∠BAC和∠BDC,此時∠BAC=∠BDC.
(1)請在圖1中再找出一對這樣的角來:=.
(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向外作菱形ACEF,D為菱形ACEF對角線的交點,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.
(3)在第(2)題的條件下,若此時AB=6,BD=8,求BC的長.2發布:2025/6/8 10:0:2組卷:584引用:6難度:0.3 -
2.如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足
+|b-8|=0,點B在第一象限內,點P從原點出發,以每秒2個單位長度的速度沿著O-C-B-A-O的線路移動.a-4
(1)求a,b的值,點B的坐標.
(2)當點P移動4.5秒時,請指出點P的位置,并求出點P的坐標;
(3)在O-C-B段的移動過程中,當△OPB的面積是12時,求點P移動的時間.發布:2025/6/8 9:30:1組卷:123引用:3難度:0.1 -
3.如圖,在平面直角坐標系中,△ABC繞旋轉中心順時針旋轉90°后得到△A'B'C',
(1)其旋轉中心的坐標是 ;
(2)寫出點C掃過的路徑長 ;
(3)若在平面內有一點D,且四邊形ABCD是平行四邊形,則該四邊形的周長為 ;
(4)在坐標軸上有點E,使S△ABC=S△AEC,直接寫出E點坐標 (寫出平面內所有符合條件的點坐標).發布:2025/6/8 10:0:2組卷:81引用:2難度:0.3