已知:拋物線C1:y=x2.如圖(1),平移拋物線C1得到拋物線C2,C2經過C1的頂點O和A(2,0),C2的對稱軸分別交C1、C2于點B、D.
(1)求拋物線C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結論;
(3)如圖(2),將拋物線C2向m個單位下平移(m>0)得拋物線C3,C3的頂點為G,與y軸交于M.點N是M關于x軸的對稱點,點P(-43m,13m)在直線MG上.問:當m為何值時,在拋物線C3上存在點Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?

4
3
1
3
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/5/27 14:0:0組卷:431難度:0.5
相似題
-
1.如圖,拋物線y=-
x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(-1,0),C(0,2).12
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由.發布:2025/6/12 18:30:1組卷:237引用:4難度:0.5 -
2.已知二次函數y=ax2+bx+c圖象的對稱軸為y軸,且過點(1,2),(2,5).
(1)求二次函數的解析式;
(2)如圖,過點E(0,2)的一次函數圖象與二次函數的圖象交于A,B兩點(A點在B點的左側),過點A,B分別作AC⊥x軸于點C,BD⊥x軸于點D.
①當CD=3時,求該一次函數的解析式;
②分別用S1,S2,S3表示△ACE,△ECD,△EDB的面積,問是否存在實數t,使得S22=tS1S3都成立?若存在,求出t的值;若不存在,說明理由.發布:2025/6/12 17:30:1組卷:1074引用:8難度:0.3 -
3.如圖,拋物線y=ax2+bx+c(a≠0)與直線y=x+1相交于A(-1,0),B(4,n)兩點,且拋物線經過點C(5,0).
(1)求拋物線的解析式;
(2)點P是直線AB上方拋物線上的一個動點(不與點A、點B重合),過點P作直線PD⊥x軸于點D,交直線AB于點E,設點P的橫坐標為m.
①求線段PE長的最大值,并求此時P點坐標;
②是否存在點P使△BEC為等腰三角形?若存在,請直接寫出m的值;若不存在,請說明理由.發布:2025/6/12 19:0:1組卷:78引用:2難度:0.3