觀察下列等式11×2=1-12,12×3=12-13,13×4=13-14,將以上三個等式兩邊分別相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.
(1)猜想并寫出:1n(n+1)=1n-1n+11n-1n+1.
(2)直接寫出下列各式的計算結果:
①11×2+12×3+13×4+…+12016×2017=2016201720162017;
②11×2+12×3+13×4+…+1n(n+1)=nn+1nn+1;
(3)仿照以上方法解決下列問題:
①直接寫出結果11×3+13×5+15×7+…+199×101;
②若11×3+13×5+15×7+…+1(2n-1)(2n+1)的值為1735,求n的值.
1
1
×
2
=
1
-
1
2
1
2
×
3
=
1
2
-
1
3
1
3
×
4
=
1
3
-
1
4
1
1
×
2
+
1
2
×
3
+
1
3
×
4
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
1
-
1
4
=
3
4
1
n
(
n
+
1
)
1
n
-
1
n
+
1
1
n
-
1
n
+
1
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
…
+
1
2016
×
2017
2016
2017
2016
2017
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
…
+
1
n
(
n
+
1
)
n
n
+
1
n
n
+
1
1
1
×
3
+
1
3
×
5
+
1
5
×
7
+
…
+
1
99
×
101
1
1
×
3
+
1
3
×
5
+
1
5
×
7
+
…
+
1
(
2
n
-
1
)
(
2
n
+
1
)
17
35
【考點】規律型:數字的變化類;有理數的混合運算.
【答案】;;
1
n
-
1
n
+
1
2016
2017
n
n
+
1
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:112引用:1難度:0.6
相似題
-
1.一組按規律排列的代數式:a+2b,a2-2b3,a3+2b5,a4-2b7,…,則第n個式子是 .
發布:2025/5/25 5:30:2組卷:911引用:7難度:0.6 -
2.觀察下列一組數的排列規律:
…那么這一組數的第2021個數1,85,157,249,3511,4813,6315,8017,9919
.發布:2025/5/25 3:30:2組卷:43引用:2難度:0.6 -
3.有一系列式子,按照一定的規律排列成3a2,9a5,27a10,81a17,……,則第n個式子為( )(n為正整數)
A.3n an2+1B.3n an2-1C.3n an2+1D.3n an2-1發布:2025/5/25 7:30:1組卷:191引用:4難度:0.7