閱讀下面材料.
小炎遇到這個(gè)一個(gè)問題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說明理由.
小炎是這樣思考的:要想解決這個(gè)問題,首先應(yīng)想辦法將這些分散的線段相對(duì)集中,她先嘗試了翻折、旋轉(zhuǎn)、平移的方法,最后發(fā)現(xiàn)線段AB、AD是共點(diǎn)并且相等的,于是找到解決問題的方法.她的方法是將△ABE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG,再利用全等的知識(shí)解決這個(gè)問題(如圖2).

參考小炎同學(xué)思考問題的方法,解決下列問題:
(1)寫出小炎的推理過程;
(2)如圖3,四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足于 ∠B+∠D=180°∠B+∠D=180°關(guān)系時(shí),仍有EF=BE+DF;
(3)如圖4,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°,若BD=1,EC=2,求DE的長(zhǎng).
【考點(diǎn)】四邊形綜合題.
【答案】∠B+∠D=180°
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/10 11:30:1組卷:291引用:2難度:0.2
相似題
-
1.已知正方形ABCD,點(diǎn)F是射線DC上一劫點(diǎn)(不與C、D重合).連接AP并延長(zhǎng)交直線BC于點(diǎn)E,交BD于H,連接CH,過點(diǎn)C作CG⊥HC交AE于點(diǎn)G.
(1)若點(diǎn)F在邊CD上,如圖1,
①證明:∠DAF=∠DCF;
②猜想△GFC的形狀并說明理由.
(2)取DF中點(diǎn)M,連接MG.若MG=2.5,正方形邊長(zhǎng)為4,求BE的長(zhǎng).發(fā)布:2025/6/11 3:30:1組卷:18引用:1難度:0.2 -
2.(1)方法回顧
證明:三角形中位線定理.
已知:如圖1,DE是△ABC的中位線.
求證:.
證明:(請(qǐng)?jiān)诖痤}紙上完成證明過程)
(2)問題解決
如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=3,DF=4,∠GEF=90°,求GF的長(zhǎng).
(3)拓展研究
如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,,∠GEF=90°,求GF的長(zhǎng).DF=2發(fā)布:2025/6/11 3:30:1組卷:167引用:1難度:0.2 -
3.(1)【定義理解】如圖1,在△ABC中,E是BC的中點(diǎn),P是AE的中點(diǎn),就稱CP是△ABC的“雙中線”,∠ACB=90°,AC=3,AB=5,則CP=.
(2)【類比探究】
①如圖2,E是菱形ABCD一邊上的中點(diǎn),P是BE上的中點(diǎn),則稱AP是菱形ABCD的“雙中線”,若AB=4,∠BAD=120°,則AP=.
②如圖3,AP是矩形ABCD的“雙中線”,若AB=4,BC=6,求AP的長(zhǎng).
(3)【拓展應(yīng)用】
如圖4,AP是平行四邊形ABCD的“雙中線”,若AB=4,BC=6,∠BAD=120°,求AP的長(zhǎng).發(fā)布:2025/6/11 2:30:2組卷:704引用:4難度:0.4