在數列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差數列,bn,an+1,bn+1成等比數列.
(1)求a2,a3,a4及b2,b3,b4,由此猜測{an},{bn}的通項公式,并證明你的結論;
(2)證明:1a1+b1+1a2+b2+…+1an+bn<512.
1
a
1
+
b
1
+
1
a
2
+
b
2
+
…
+
1
a
n
+
b
n
<
5
12
【考點】數學歸納法;等差數列與等比數列的綜合.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:864引用:14難度:0.1
相似題
-
1.用數學歸納法證明
+1n+1+…+1n+2≥13n,從n=k到n=k+1,不等式左邊需添加的項是( )56A. +13k+1+13k+213k+3B. +13k+1+13k+2-13k+31k+1C. 13k+1D. 13k+3發布:2024/12/17 12:30:2組卷:441引用:12難度:0.9 -
2.用數學歸納法證明
時,在證明n=1等式成立時,此時等式的左邊是( )1+a+a2+…+a2(n+1)=1-a2n+31-a(a≠1,n∈N*)A.1 B.1+a C.1+a+a2+a3 D.1+a+a2+a3+a4 發布:2024/12/29 9:0:1組卷:293引用:3難度:0.8 -
3.已知n為正整數,請用數學歸納法證明:1+
+12+……+131n.<2n發布:2024/10/27 17:0:2組卷:424引用:1難度:0.7