試卷征集
          加入會員
          操作視頻

          閱讀下列材料:
          “a2≥0”這個結論在數學中非常有用,有時我們需要將代數式配成完全平方式.例如:
          x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.
          試利用“配方法”解決下列問題:
          (1)填空:x2-6x+12=(x-
          3
          3
          2+
          3
          3
          ;
          (2)已知a,b,c是△ABC的三邊長,滿足a2+b2=10a+8b-41,且c是△ABC中最長的邊,求c的取值范圍;
          (3)比較代數式x2+2y2與2xy+4y-8的大?。?/h1>

          【答案】3;3
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:286引用:2難度:0.5
          相似題
          • 1.(1)已知3m=6,3n=2,求32m+n-1的值;
            (2)已知a2+b2+2a-4b+5=0,求(a-b)-3的值.

            發布:2025/6/7 10:30:1組卷:194引用:3難度:0.5
          • 2.在學了乘法公式“(a±b)2=a2±2ab+b2”的應用后,王老師提出問題:求代數式x2+4x+5的最小值.要求同學們運用所學知識進行解答.
            同學們經過探索、交流和討論,最后總結出如下解答方法;
            解:x2+4x+5=x2+4x+22-22+5=(x+2)2+1,
            ∵(x+2)2≥0,∴(x+2)2+1≥1.
            當(x+2)2=0時,(x+2)2+1的值最小,最小值是1.
            ∴x2+4x+5的最小值是1.
            請你根據上述方法,解答下列各題:
            (1)直接寫出(x-1)2+3的最小值為

            (2)求代數式x2+10x+32的最小值.
            (3)你認為代數式-
            1
            3
            x
            2
            +2x+5有最大值還是有最小值?求出該最大值或最小值.
            (4)若7x-x2+y-11=0,求x+y的最小值.

            發布:2025/6/7 11:0:1組卷:1135引用:4難度:0.5
          • 3.閱讀下列材料:
            利用完全平方公式,將多項式x2+bx+c變形為(x+m)2+n的形式,然后由(x+m)2≥0就可求出多項式x2+bx+c的最小值.
            例題:求x2-12x+37的最小值:
            解:x2-12x+37=x2-2x?6+62-62+37=(x-6)2+1
            因為不論x取何值,(x-6)2總是非負數,即(x-6)2≥0.
            所以(x-6)2+1≥1.
            所以當x=6時,x2-12x+37有最小值,最小值是1.
            根據上述材料,解答下列問題:
            (1)填空:x2-8x+
            =(x-
            2
            (2)將x2+10x-2變形為(x+m)2+n的形式,并求出x2+10x-2的最小值;
            (3)如圖所示的第一個長方形邊長分別是2a+5、3a+2,面積為S1;如圖所示的第二個長方形邊長分別是5a、a+5,面積為S2;試比較S1與S2的大小,并說明理由.

            發布:2025/6/7 8:30:2組卷:174引用:1難度:0.4
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正