如圖,拋物線y=ax2+c(a≠0)與y軸交于點A,與x軸交于點B,C兩點(點C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4.現將拋物線沿BA方向平移,平移后的拋物線經過點C時,與x軸的另一交點為E,其頂點為F,對稱軸與x軸的交點為H.現將一足夠大的三角板的直角頂點Q放在射線AF或射線HF上,一直角邊始終過點E,另一直角邊與y軸相交于點P.若存在這樣的點Q,使以點P,Q,E為頂點的三角形與△POE全等,則點Q的坐標為(6,221)或(6,3)或(10,12)或(4+14,6+14)或(4-14,6-14)(6,221)或(6,3)或(10,12)或(4+14,6+14)或(4-14,6-14).
21
14
14
14
14
21
14
14
14
14
【考點】二次函數綜合題.
【答案】(6,2)或(6,3)或(10,12)或(4+,6+)或(4-,6-)
21
14
14
14
14
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:59引用:1難度:0.5
相似題
-
1.如圖1,在平面直角坐標系xOy中,已知拋物線y=-x2+bx+c經過A(-1,0),B(3,0)兩點.P是拋物線上一點,且在直線BC的上方.
(1)求拋物線的解析式;
(2)如圖2,點E為OC中點,作PQ∥y軸交BC于點Q,若四邊形CPQE為平行四邊形,求點P的橫坐標;
(3)如圖3,連結AC、AP,AP交BC于點M,作PH∥AC交BC于點H.記△PHM,△PMC,△CAM的面積分別為S1,S2,S3.判斷是否存在最大值.若存在,求出最大值;若不存在,請說明理由.S1S2+S2S3發布:2025/5/23 6:0:2組卷:867難度:0.1 -
2.如圖,在平面直角坐標系中,拋物線y=ax2+bx-1的頂點A的坐標為
,與y軸交于點B.(-34,-178)
(1)求拋物線的函數表達式;
(2)點P是拋物線上的動點,過點P作PM⊥x軸于點M,以PM為斜邊作等腰直角三角形PMN,當點N恰好落在y軸上時,求點P的坐標.發布:2025/5/23 6:0:2組卷:312引用:2難度:0.3 -
3.如圖1,在平面直角坐標系中,拋物線y=a(x-3)2+4過原點,與x軸的正半軸交于點A,已知B點為拋物線的頂點,拋物線的對稱軸與x軸交于點D.
(1)求a的值,并直接寫出A、B兩點的坐標;
(2)若P點是該拋物線對稱軸上一點,且∠BOP=45°,求點P的坐標;
(3)如圖2,若C點為線段BD上一點,求3BC+5AC的最小值.發布:2025/5/23 6:0:2組卷:822引用:3難度:0.3