教材中這樣寫道:“我們把多項式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果關(guān)于某一字母的二次多項式不是完全平方式,我們常做如下變形:先添加一個適當(dāng)?shù)捻棧故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求代數(shù)式最大值,最小值等.
例如:分解因式x2+2x-3.
原式=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
例如:求代數(shù)式x2+4x+6的最小值.
原式=x2+4x+4+2=(x+2)2+2.
∵(x+2)2≥0,
∴當(dāng)x=-2時,x2+4x+6有最小值是2.
根據(jù)閱讀材料用配方法解決下列問題:
(1)分解因式:m2-4m-5=(m+1)(m-5)(m+1)(m-5);
(2)求代數(shù)式x2-6x+12的最小值;
(3)若y=-x2+2x-3,當(dāng)x=11時,y有最 大大值(填“大”或“小”),這個值是 -2-2;
(4)當(dāng)a,b,c分別為△ABC的三邊時,且滿足a2+b2+c2-6a-10b-8c+50=0時,判斷△ABC的形狀并說明理由.
【答案】(m+1)(m-5);1;大;-2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:810引用:4難度:0.5
相似題
-
1.已知a-b=-l,則3a2-6ab+3b2=.
發(fā)布:2025/5/24 17:0:2組卷:6引用:1難度:0.6 -
2.若一個四位數(shù)M的個位數(shù)字與十位數(shù)字的和與它們的差之積恰好是M去掉個位數(shù)字與十位數(shù)字后得到的兩位數(shù),則這個四位數(shù)M為“和差數(shù)”.
例如:M=1514,∵(4+1)(4-1)=15,∴1514是“和差數(shù)”.
又如:M=2526,∵(6+2)(6-2)=32≠25,∴2526不是“和差數(shù)”.
(1)判斷2022,2046是否是“和差數(shù)”,并說明理由;
(2)一個“和差數(shù)”M的千位數(shù)字為a,百位數(shù)字為b,十位數(shù)字為c,個位數(shù)字為d,記,且G(M)=dc.當(dāng)G(M),P(M)均是整數(shù)時,求出所有滿足條件的M.P(M)=Mc+d發(fā)布:2025/5/24 7:30:1組卷:222引用:1難度:0.4 -
3.材料:一個兩位數(shù)記為x,另外一個兩位數(shù)記為y,規(guī)定F(x,y)=
,當(dāng)F(x,y)為整數(shù)時,稱這兩個兩位數(shù)互為“均衡數(shù)”.x+y7
例如:x=42,y=21,則F(42,21)==9,所以42,21互為“均衡數(shù)”,又如x=54,y=43,F(xiàn)(54,43)=42+217不是整數(shù),所以54,43不是互為“均衡數(shù)”.54+437
(1)請判斷40,41和52,17是不是互為“均衡數(shù)”,并說明理由.
(2)已知x,y是互為“均衡數(shù)”,且x=10a+b,y=20a+2b+c+5,(1≤a≤4,1≤b≤4,0≤c≤4,且a、b、c為整數(shù)),規(guī)定G(x,y)=2x-y.若G(x,y)除以7余數(shù)為2,求出F(x,y)值.發(fā)布:2025/5/24 8:30:1組卷:205引用:2難度:0.4