已知:拋物線L:y=-(x-3)(x-t)與x軸交于點A、B(其中點A為定點),與y軸交于點C,記拋物線L在y軸及y軸右側的圖象為G,圖象G的最高點為點P,另有直線F:y=t,如圖是t取某值時的圖象.
(1)當t=00時,拋物線L過原點,此時AB=33;
(2)若AB=2,且點B在點A的左側,求點C的坐標;
(3)當點P的縱坐標為16時,求t的值;
(4)當t為何值時,圖象G上恰好存在兩點到直線F距離為94,直接寫出符合條件t的取值范圍.
9
4
【考點】二次函數綜合題.
【答案】0;3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/6/27 10:35:59組卷:106引用:1難度:0.3
相似題
-
1.已知拋物線y=ax2+bx-3經過點A(1,0),B(-2,-3),頂點為點P,與y軸交于點C.
(1)求該拋物線的表達式以及頂點P的坐標;
(2)將拋物線向上平移m(m>0)個單位后,點A的對應點為點M,若此時MB∥AC,求m的值;
(3)設點D在拋物線y=ax2+bx-3上,且點D在直線BC上方,當∠DBC=∠BAC時,求點D的坐標.發布:2025/5/24 11:30:1組卷:471引用:1難度:0.3 -
2.如圖,在直角坐標系中有Rt△AOB,O為坐標原點,A(0,3),B(-1,0),將此三角形繞原點O順時針旋轉90°,得到Rt△COD,二次函數y=ax2+bx+c的圖象剛好經過A,B,C三點.
(1)求二次函數的解析式及頂點P的坐標;
(2)過定點Q的直線l:y=kx-k+3與二次函數圖象相交于M,N兩點.
①若S△PMN=2,求k的值;
②證明:無論k為何值,△PMN恒為直角三角形;
③當直線l繞著定點Q旋轉時,△PMN外接圓圓心在一條拋物線上運動,直接寫出該拋物線的表達式.發布:2025/5/24 12:0:1組卷:727引用:7難度:0.2 -
3.如圖,二次函數y=ax2+bx+5的圖象經過點(1,8),且與x軸交于A、B兩點,與y軸交于點C,其中點A(-1,0),M為拋物線的頂點.
(1)求二次函數的解析式;
(2)求△MCB的面積;
(3)在坐標軸上是否存在點N,使得△BCN為直角三角形?若存在,求出點N的坐標;若不存在,請說明理由.發布:2025/5/24 12:0:1組卷:1427引用:7難度:0.5