試卷征集
          加入會員
          操作視頻

          某市教育部門計劃從該市的中學生中選出6人作為該市代表去參加省里的中華古詩詞大賽,該市經過初賽選拔最后決定從甲、乙兩所中學的學生中進行最后的篩選.甲中學推薦了3名男生,3名女生,乙中學推薦了3名男生,4名女生,兩校推薦的學生一起參加集訓,由于集訓后所有學生的水平相當,該市決定從參加集訓的兩校男生中隨機抽取3人,女生中隨機抽取3人組成該市的代表隊.
          (1)求甲中學至少有1名學生入選該市代表隊的概率;
          (2)在省賽某場比賽前,從該市代表隊的6名學生中隨機抽取3人參賽,設X表示參賽隊員中的女生人數,求X的分布列和數學期望.

          【答案】(1)
          174
          175

          (2)X的分布列為:
           X  0  1  2  3
           P  
          1
          20
           
          9
          20
           
          9
          20
           
          1
          20
          E(X)=
          3
          2
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:50引用:2難度:0.5
          相似題
          • 1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間(30,150]內,其頻率分布直方圖如圖.
            (Ⅰ)求獲得復賽資格的人數;
            (Ⅱ)從初賽得分在區間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區間(110,130]與(130,150]各抽取多少人?
            (Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區間(130,150]中參加全市座談交流的人數,求X的分布列及數學期望E(X).

            發布:2024/12/29 13:30:1組卷:133引用:7難度:0.5
          • 2.設離散型隨機變量X的分布列如表:
            X 1 2 3 4 5
            P m 0.1 0.2 n 0.3
            若離散型隨機變量Y=-3X+1,且E(X)=3,則(  )

            發布:2024/12/29 13:0:1組卷:198引用:6難度:0.5
          • 3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數,則E(X)為(  )

            發布:2024/12/29 13:30:1組卷:138引用:6難度:0.7
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正