試卷征集
          加入會員
          操作視頻

          數(shù)學(xué)中,常對同一個量用兩種不同的方法計算,從而建立相等關(guān)系,我們把這一思想稱為“算兩次”.

          [探究一]:
          如圖1,在邊長為a的正方形紙片上剪去一個邊長為b(b<a)的正方形,你能表示圖中陰影部分的面積嗎?陰影部分的面積是
          a2-b2
          a2-b2

          如圖2,也可以把陰影部分沿著虛線AB剪開,分成兩個梯形,陰影部分的面積是
          (a+b)(a-b)
          (a+b)(a-b)

          用兩種不同的方法計算同一個陰影部分的面積,可以得到等式
          a2-b2=(a+b)(a-b)
          a2-b2=(a+b)(a-b)

          [探究二]:
          如圖3,一條直線上有n個點,請你數(shù)一數(shù)共有多少條線段呢?
          方法1:一路往右數(shù),不回頭數(shù).
          以A1為端點的線段有A1A2、A1A3、A1A4、A1A5、…、A1An,共有(n-1)條;
          以A2為端點的線段有A2A3、A2A4、A2A5、…、A2An,共有(n-2)條;
          以A3為端點的線段有A3A4、A3A5、…、A3An,共有(n-3)條;

          以An-1為端點的線段有An-1An,共有1條;圖中線段的總條數(shù)是
          (n-1)+(n-2)+(n-3)+...+3+2+1
          (n-1)+(n-2)+(n-3)+...+3+2+1

          方法2:每一個點都能和除它以外的(n-1)個點形成線段,共有n個點,共可形成n(n-1)條線段,但所有線段都數(shù)了兩遍,所以線段的總條數(shù)是
          n
          n
          -
          1
          2
          n
          n
          -
          1
          2

          用兩種不同的方法數(shù)線段,可以得到等式
          n
          -
          1
          +
          n
          -
          2
          +
          n
          -
          3
          +
          ?
          +
          3
          +
          2
          +
          1
          =
          n
          n
          -
          1
          2
          n
          -
          1
          +
          n
          -
          2
          +
          n
          -
          3
          +
          ?
          +
          3
          +
          2
          +
          1
          =
          n
          n
          -
          1
          2

          [應(yīng)用]運用探究一、探究二中得到的等式解決問題.
          計算:992-982+972-962+952-942+…+32-22+12

          【答案】a2-b2;(a+b)(a-b);a2-b2=(a+b)(a-b);(n-1)+(n-2)+(n-3)+...+3+2+1;
          n
          n
          -
          1
          2
          n
          -
          1
          +
          n
          -
          2
          +
          n
          -
          3
          +
          ?
          +
          3
          +
          2
          +
          1
          =
          n
          n
          -
          1
          2
          【解答】
          【點評】
          聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
          發(fā)布:2024/6/27 10:35:59組卷:156引用:1難度:0.5
          相似題
          • 1.如圖,大正方形與小正方形的面積之差是80,則陰影部分的面積是(  )

            發(fā)布:2024/12/23 20:0:2組卷:845引用:5難度:0.7
          • 2.如圖,從邊長為a的大正方形紙板的邊上挖去一個邊長為b的小正方形紙板后,沿著小正方形的缺口,將其裁成兩個長方形,然后拼成一個長方形.那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為(  )

            發(fā)布:2024/12/23 8:30:2組卷:234引用:4難度:0.8
          • 3.如圖1,在邊長為a的正方形中剪去一個邊長為b的小正方形(a>b),把剩下部分拼成一個梯形(如圖2),利用這兩幅圖形面積,可以驗證的公式是(  )

            發(fā)布:2024/12/23 8:30:2組卷:5245引用:46難度:0.9
          APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
          本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正