記f′(x),g′(x)分別為函數f(x),g(x)的導函數.若存在x0∈R,滿足f(x0)=g(x0)且f′(x0)=g′(x0),則稱x0為函數f(x)與g(x)的一個“S點”.
(1)證明:函數f(x)=x與g(x)=x2+2x-2不存在“S點”;
(2)若函數f(x)=ax2-1與g(x)=lnx存在“S點”,求實數a的值;
(3)已知函數f(x)=-x2+a,g(x)=bexx.對任意a>0,判斷是否存在b>0,使函數f(x)與g(x)在區間(0,+∞)內存在“S點”,并說明理由.
b
e
x
x
【考點】基本初等函數的導數.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/4/20 14:35:0組卷:2657引用:10難度:0.5
相似題
-
1.設f(x)=sinx-cosx,則f(x)在x=
處的導數f′(π4)=( )π4A. 2B.- 2C.0 D. 22發布:2024/12/29 13:0:1組卷:222引用:8難度:0.9 -
2.下列結論中正確的有( )
A.若y=x,則y'=0 B.若 ,則y'=lnxy=1xC.若 ,則y=sinπ3y′=12D.若 ,則y=cosxxy′=-xsinx+cosxx2發布:2024/12/29 13:0:1組卷:195引用:3難度:0.7 -
3.已知f(x)=lnx,則f′(e)的值為( )
A.1 B.-1 C.e D. 1e發布:2025/1/3 16:0:5組卷:1742引用:12難度:0.9