在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)A和線段MN,如果點(diǎn)A,O,M,N按逆時(shí)針?lè)较蚺帕袠?gòu)成菱形AOMN,且∠AOM=α,則稱線段MN是點(diǎn)A的“α-相關(guān)線段”.例如,圖1中線段MN是點(diǎn)A的“30°-相關(guān)線段”.
(1)已知點(diǎn)A的坐標(biāo)是(0,2).
①在圖2中畫(huà)出點(diǎn)A的“30°-相關(guān)線段”MN,并直接寫出點(diǎn)M和點(diǎn)N的坐標(biāo);
②若點(diǎn)A的“α-相關(guān)線段”經(jīng)過(guò)點(diǎn)(3,1),求α的值;
(2)若存在α,β(α≠β)使得點(diǎn)P的“α-相關(guān)線段”和“β-相關(guān)線段”都經(jīng)過(guò)點(diǎn)(0,4),記PO=t,直接寫出t的取值范圍.

3
【考點(diǎn)】四邊形綜合題.
【答案】(1)①M(fèi)(1,),N(1,+2).
②60°或120°.
(2)2<t≤4.
3
3
②60°或120°.
(2)2
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1219引用:7難度:0.1
相似題
-
1.在五邊形ABCDE中,四邊形ABCD是矩形,△ADE是以E為直角頂點(diǎn)的等腰直角三角形.CE與AD交于點(diǎn)G,將直線EC繞點(diǎn)E順時(shí)針旋轉(zhuǎn)45°交AD于點(diǎn)F.
(1)求證:∠AEF=∠DCE;
(2)判斷線段AB,AF,F(xiàn)C之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若FG=CG,且AB=2,求線段BC的長(zhǎng).發(fā)布:2025/5/24 8:0:1組卷:328引用:2難度:0.2 -
2.[問(wèn)題提出]
正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
[問(wèn)題探究]
如圖①,△ABC是等邊三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離PF、PE、PD分別為h1、h2、h3,設(shè)△ABC的邊長(zhǎng)是a,面積為S.過(guò)點(diǎn)O作OM⊥AB.
∴OM=Rcos∠AOB=Rcos60°,AM=Rsin12∠AOB=Rsin60°,AB=2AM=2Rsin60°12
∴S△ABC=3S△AOB=3×AB×OM=3R2sin60°cos60°①12
∵S△ABC又可以表示為a(h1+h2+h3)②12
聯(lián)立①②得a(h1+h2+h3)=3R2sin60°cos60°12
∴×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°12
∴h1+h2+h3=3Rcos60°
[問(wèn)題解決]
如圖②,五邊形ABCDE是正五邊形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距PH、PM、PN、PI、PL分別為h1、h2、h3、h4、h5,參照(1)的分析過(guò)程,探究h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
[性質(zhì)應(yīng)用]
(1)正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和h1+h2+h3+h4+h5+h6=.
(2)如圖③,正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和h1+h2+hn-1+hn=.發(fā)布:2025/5/24 8:0:1組卷:149引用:1難度:0.2 -
3.四邊形ABCD為正方形,AB=8,點(diǎn)E為直線BC上一點(diǎn),射線AE交對(duì)角線BD于點(diǎn)F,交直線CD于點(diǎn)G.
(1)如圖,點(diǎn)E在BC延長(zhǎng)線上.求證:△CFG∽△EFC;
(2)是否存在點(diǎn)E,使得△CFG是等腰三角形?若存在,求BE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/5/24 7:0:1組卷:57引用:1難度:0.1