試卷征集
          加入會員
          操作視頻

          東方商店欲購進某種食品(保質期兩天),此商店每兩天購進該食品一次(購進時,該食品為剛生產的).根據市場調查,該食品每份進價8元,售價12元,如果兩天內無法售出,則食品過期作廢,且兩天內的銷售情況互不影響,為了了解市場的需求情況,現統計該產品在本地區100天的銷售量如表:
          銷售量(份) 15 16 17 18
          天數 20 30 40 10
          (視樣本頻率為概率)
          (1)根據該產品100天的銷售量統計表,記兩天中一共銷售該食品份數為ξ,求ξ的分布列與期望
          (2)以兩天內該產品所獲得的利潤期望為決策依據,東方商店一次性購進32或33份,哪一種得到的利潤更大?

          【答案】(1)ξ的分布列為:
           ξ  30  31  32  33  34  35  36
           P  0.04  0.12  0.25  0.28  0.22  0.08  0.01
          E(ξ)=32.8;
          (2)購進32份食品時得到的利潤更大.
          【解答】
          【點評】
          聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
          發布:2024/6/27 10:35:59組卷:288引用:8難度:0.7
          相似題
          • 1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區間(30,150]內,其頻率分布直方圖如圖.
            (Ⅰ)求獲得復賽資格的人數;
            (Ⅱ)從初賽得分在區間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區間(110,130]與(130,150]各抽取多少人?
            (Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區間(130,150]中參加全市座談交流的人數,求X的分布列及數學期望E(X).

            發布:2024/12/29 13:30:1組卷:134引用:7難度:0.5
          • 2.設離散型隨機變量X的分布列如表:
            X 1 2 3 4 5
            P m 0.1 0.2 n 0.3
            若離散型隨機變量Y=-3X+1,且E(X)=3,則(  )

            發布:2024/12/29 13:0:1組卷:200引用:6難度:0.5
          • 3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數,則E(X)為(  )

            發布:2024/12/29 13:30:1組卷:139引用:6難度:0.7
          APP開發者:深圳市菁優智慧教育股份有限公司| 應用名稱:菁優網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
          本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正