如圖,已知在△ABC中,AC=6,BC=8,∠ACB=90°,動點P從C出發,沿C→A→C做往返運動,速度為每秒3個單位長度,另一個動點Q從B出發沿BC向終點C運動,每秒2個單位長度,兩點同時出發,有一個點到終點時另一個也隨之停止運動.設運動時間為t秒.
(1)線段CP=3t(0≤t≤2) 12-3t(2<t≤4)
3t(0≤t≤2) 12-3t(2<t≤4)
.(用含t的代數式表示)
(2)當t=4343時,線段PQ∥AB.
(3)連接PQ,當t為何值時,△CPQ的面積為6?
(4)直接寫出當t為何值時,以點C、P、Q為頂點的三角形與△ABC相似?
3 t ( 0 ≤ t ≤ 2 ) |
12 - 3 t ( 2 < t ≤ 4 ) |
3 t ( 0 ≤ t ≤ 2 ) |
12 - 3 t ( 2 < t ≤ 4 ) |
4
3
4
3
【考點】相似形綜合題.
【答案】
;
3 t ( 0 ≤ t ≤ 2 ) |
12 - 3 t ( 2 < t ≤ 4 ) |
4
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優網所有,未經書面同意,不得復制發布。
發布:2024/8/23 8:0:1組卷:37引用:2難度:0.5
相似題
-
1.已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中點,P是腰AB上一動點,連接PE并延長,交射線CD于點M,作EF⊥PE,交下底BC于點F,連接MF交AD于點N,連接PF,AB=AD=4,BC=6,點A、P之間的距離為x,△PEF的面積為y.
(1)當點F與點C重合時,求x的值;
(2)求y關于x的函數解析式,并寫出它的定義域;
(3)當∠CMF=∠PFE時,求△PEF的面積.發布:2025/1/28 8:0:2組卷:242引用:1難度:0.5 -
2.【感知】如圖①,在Rt△ABC中,∠ACB=90°,D、E分別是邊AC、BC的中點,連接DE.則△CDE與△CAB的面積比為.
【探究】將圖①的△CDE繞著點C按順時針方向旋轉一定角度,使點E落在△ABC內部,連接AD、BE,并延長BE分別交AC、AD于點O、F,其它條件不變,如圖②.
(1)求證:△ACD∽△BCE.
(2)求證:AD⊥BF.
【應用】將圖②的△CDE繞著點C按順時針方向旋轉,使點D恰好落在邊BC的延長線上,連接AD、BE,BE的延長線交AD于點F,其它條件不變,如圖③,若AC=4,BC=3,則BF的長為.發布:2025/1/28 8:0:2組卷:302引用:1難度:0.1 -
3.【閱讀】“關聯”是解決數學問題的重要思維方式,角平分線的有關聯想就有很多……
(1)【問題提出】如圖①,PC是△PAB的角平分線,求證.PAPB=ACBC小明思路:關聯“平行線、等腰三角形”,過點B作BD∥PA,交PC的延長線于點D,利用“三角形相似”.
小紅思路:關聯“角平分線上的點到角的兩邊的距離相等”,過點C分別作CD⊥PA交PA于點D,作CE⊥PB交PB于點E,利用“等面積法”.
(2)【理解應用】填空:如圖②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于點D,則BD長度為 ;
(3)【深度思考】如圖③,在Rt△ABC中,∠BAC=90°,D是邊BC上一點,連接AD,將△ACD沿AD所在直線折疊點C恰好落在邊AB上的E點處.若AC=1,AB=2,則DE的長為 ;
(4)【拓展升華】如圖④,△ABC中,AB=6,AC=4,AD為∠BAC的角平分線,AD的垂直平分線EF交BC延長線于F,連接AF,當BD=3時,AF的長為 .發布:2025/1/28 8:0:2組卷:363引用:1難度:0.1